Paderborn, den 18. Mai 2004 Abgabe bis Mi 26. Mai, 9:00 Uhr

Ubungen zur Vorlesung

Lineare Algebra II

Sommersemester 2004

Blatt 5

AUFGABE 17 (4 Punkte):

Sei

$$A = \begin{pmatrix} 8 & -3 & -3 & 12 \\ 6 & -1 & -3 & 12 \\ -24 & 6 & 8 & -36 \\ -9 & 3 & 3 & -13 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

Man zeige, dass A diagonalisierbar ist und ermittle ein $P \in GL_4(\mathbb{R})$, so dass $P^{-1}AP$ eine Diagonalmatrix ist.

AUFGABE 18 (4 Punkte):

Sei

$$A = \begin{pmatrix} 4 & -9 & 6 & -3 \\ 2 & -6 & 5 & -3 \\ 1 & -3 & 2 & -2 \\ -1 & 2 & -2 & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R})$$

und $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ der Endomorphismus mit f(x) = Ax. Man zeige, dass f nicht diagonalisierbar aber trigonalisierbar ist und bestimme eine Basis von \mathbb{R}^4 , bzgl. welcher f durch eine obere Dreiecksmatrix dargestellt wird.

AUFGABE 19 (4 Punkte):

- a) Sei $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Man zeige, dass die Menge $\{A \in M_2(\mathbb{R}) \mid AS = SA\}$ ein Körper ist, der *isomorph* ist zum Körper \mathbb{C} der komplexen Zahlen. (Dabei heißen zwei Körper K und Lisomorph, wenn es eine bijektive Abbildung $\varphi: K \longrightarrow L$ gibt, mit $\varphi(xy) = \varphi(x)\varphi(y)$ und $\varphi(x+y) = \varphi(x) + \varphi(y)$ für alle $x, y \in K$; man finde eine solche.)
- b) Man zeige das gleiche für $S = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}$. (HINWEIS: Berechne S^2 . Man zeige: Gilt
- AS = SA, so gibt es $a, b \in \mathbb{R}$ mit $A = aE_2 + bS$.) c) Sei $S = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$. Man zeige, dass es in $\{A \in M_2(\mathbb{R}) \mid AS = SA\}$ Elemente $A, B \neq 0$ gibt mit AB = 0. (Und daher ist dies kein Körper.) (HINWEIS: Man schaue sich Matrizen der Form $\lambda E_2 - S$ an. S ist diagonalisierbar.)

AUFGABE 20 (4 Punkte):

Sei $A = \begin{pmatrix} -2 & -2 & -4 \\ -1 & 0 & -1 \\ 1 & 2 & 3 \end{pmatrix}$. Man berechne A^{151} . Elektronische Hilfsmittel sind nicht erlaubt.

Ausdrücke wie 2^{151} müssen nicht weiter ausgerechnet werden.

Abgabeort: Grüne Kästen 109 (Gruppen 1+2) und 111 (Gruppen 3+4)