Paderborn, den 7. Juli 2004 Abgabe bis Mi 14. Juli, 9:00 Uhr

Übungen zur Vorlesung

Lineare Algebra II

Sommersemester 2004

Blatt 12

AUFGABE 45 (4 Punkte):

Sei V ein euklidischer Vektorraum der Dimension n. Sei $a \in V$ mit |a| = 1. Der Endomorphismus s_a mit $s_a(x) = x - 2\langle a, x \rangle a$ heißt Spiegelung. (Warum? Betrachte $\langle a \rangle^{\perp}$.) Man zeige:

- (1) Ist s_a eine Spiegelung und f orthogonal, so ist $f^{-1} \circ s_a \circ f$ eine Spiegelung.
- (2) Jeder orthogonale Endomorphismus f ist ein Produkt von Spiegelungen: $f = s_{a_k} \circ ... \circ s_{a_1}$ (wobei $k \leq n$). Ist f speziell orthogonal, so ist k dabei gerade.

(HINWEIS: Zunächst für n=2; dann Normalform für orthogonale Abbildungen.)

AUFGABE 46 (4 Punkte):

Sei $\mathbb{H} = \left\{ \begin{pmatrix} a & -b \\ \bar{b} & \bar{a} \end{pmatrix} \mid a, b \in \mathbb{C} \right\}$. Die Menge \mathbb{H} bildet mit den Matrizenoperationen einen \mathbb{R} -Vektorraum und einen Ring. Seien

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ \mathbf{j} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ \mathbf{k} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}.$$

Man zeige:

- (1) 1, i, j, k bilden eine Basis des \mathbb{R} -Vektorraums \mathbb{H} , und es gilt $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$ und $\mathbf{i}\mathbf{j} = -\mathbf{j}\mathbf{i} = \mathbf{k}$.
- (2) Man zeige: Ist $x \in \mathbb{H}$ mit $x \neq 0$, so ist x invertierbar. (Damit ist \mathbb{H} ein nicht-kommutativer Körper; dies ist der Schiefkörper der Hamiltonschen Quaternionen.)
- (3) Für $x = \begin{pmatrix} a & -b \\ \bar{b} & \bar{a} \end{pmatrix}$ sei $\bar{x} = \begin{pmatrix} \bar{a} & b \\ -\bar{b} & a \end{pmatrix}$ und Re(x) sei der Realteil der komplexen Zahl a. (Man mache sich klar, was diese Definitionen für Elemente bedeuten, die eindeutig in obiger Basis dargestellt sind.) Man zeige, dass durch

$$\langle x, y \rangle \stackrel{def}{=} \operatorname{Re}(x\overline{y})$$

 \mathbb{H} zu einem euklidischen Vektorraum wird, so dass $\mathbf{1}$, \mathbf{i} , \mathbf{j} , \mathbf{k} eine Orthonormalbasis ist. Man zeige, dass $\langle x, x \rangle = \det(x)$ für jedes $x \in \mathbb{H}$ gilt.

Beachte: Es gilt $SU(2) = \{x \in \mathbb{H} \mid \det(x) = 1\}$. Ferner sieht man sofort die Rechenregel $\overline{x \cdot y} = \overline{y} \cdot \overline{x}$.

AUFGABE 47 (4 Punkte):

Man zeige:

- (1) Für jedes $q \in SU(2)$ gilt $q^{-1} = \overline{q}$. (Beachte obige Definition von \overline{q} für $q \in \mathbb{H}$.)
- (2) Für jedes $q \in SU(2)$ gilt $s_q(x) = -q\overline{x}q$ für alle $x \in \mathbb{H}$.
- (3) Für alle $p, q \in SU(2)$ gilt $s_q \circ s_p(x) = q\overline{p}x\overline{p}q$ für alle $x \in \mathbb{H}$.

Definiere Im $\mathbb{H} = \langle \mathbf{1} \rangle^{\perp} \subset \mathbb{H}$. Man kann leicht mit obiger Basis zeigen: Für jedes $x \in \mathbb{H}$ gilt

$$x \in \operatorname{Im} \mathbb{H} \iff \overline{x} = -x.$$

AUFGABE 48 (8 Punkte):

Man zeige:

- (1) Sei $q \in SU(2)$. Für jedes $x \in Im \mathbb{H}$ ist $qx\overline{q} \in Im \mathbb{H}$. Mehr noch: Die Abbildung ψ_q : $Im \mathbb{H} \longrightarrow Im \mathbb{H}$ mit $\psi_q(x) = qx\overline{q}$ ist ein speziell orthogonaler Endomorphismus. (HINWEIS: Ein Endomorphismus f ist schon dann orthogonal, wenn $\langle f(x), f(x) \rangle = \langle x, x \rangle$ für alle x gilt.)
- (2) Die Zuordnung $q \mapsto \psi_q$ ist ein Gruppenhomomorphismus $SU(2) \longrightarrow SO(\operatorname{Im} \mathbb{H}) = SO(3)$ mit Kern $\{1, -1\}$.
- (3) Der Homomorphismus aus (2) ist surjektiv. (Hierfür gibt es 4 Bonuspunkte!)

(HINWEIS: Erweitere ein $f \in SO(\operatorname{Im} \mathbb{H})$ auf kanonische Weise zu einem $\hat{f} \in SO(\mathbb{H})$ (mit $\hat{f}_{|\operatorname{Im} \mathbb{H}} = f$ und $\hat{f}(\mathbf{1}) = \mathbf{1}$). Benutze dann Aufgabe 45 (2) und Aufgabe 47 (3).)

Abgabeort: Grüne Kästen 109 (Gruppen 1+2) und 111 (Gruppen 3+4)