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Abstract

In these notes we investigate noncommutative smooth projective curves of

genus zero, also called exceptional curves. As a main result we show that each such

curve X admits, up to some weighting, a projective coordinate algebra which is a

not necessarily commutative graded factorial domain R in the sense of Chatters

and Jordan. Moreover, there is a natural bijection between the points of X and the

homogeneous prime ideals of height one in R, and these prime ideals are principal

in a strong sense.

Curves of genus zero have strong applications in the representation theory of

finite dimensional algebras being natural index sets for one-parameter families of

indecomposable modules. They play a key role for an understanding of the notion

of tameness and conjecturally for an extension of Drozd’s Tame and Wild Theorem

to arbitrary base fields. The function field of X agrees with the endomorphism

ring of the unique generic module over the associated tame hereditary algebra.

This skew field is of finite dimension over its centre which is an algebraic function

field in one variable. As another main result we show that the function field is

commutative if and only if the multiplicities determined by the homomorphism

spaces from line bundles to simples sheaves (originally defined by Ringel for tame

hereditary algebras) are equal to one for every point.

The study provides major insights into the nature of arithmetic complications

in the representation theory of finite dimensional algebras that arise if the base field

is not algebraically closed.

Received by the editor March 19, 2006 and in revised form March 18, 2007.
2000 Mathematics Subject Classification. Primary 14H45, 16G10; Secondary 14H60, 14A22,

16S38.
Key words and phrases. noncommutative curve, genus zero, exceptional curve, one-parameter

family, separating tubular family, tame bimodule, canonical algebra, tubular algebra, orbit algebra,
graded factorial domain, efficient automorphism, ghost automorphism.
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Introduction

Curves of genus zero. In these notes we study noncommutative curves of

genus zero. By a curve we always mean a smooth, projective curve defined over a

field k. A noncommutative curve is given by a small connected k-category H which

shares the properties with the category coh(X) of coherent sheaves over a smooth

projective curve X, listed below:

• H is abelian and each object in H is noetherian.

• All morphism and extension spaces in H are of finite k-dimension.

• There is an autoequivalence τ on H (called Auslander-Reiten translation)

such that Serre duality Ext1H(X, Y ) = DHomH(Y, τX) holds, where D =

Homk(−, k).

• H contains an object of infinite length.

It follows from Serre duality that H is a hereditary category, that is, Extn
H

vanishes for all n ≥ 2. Let H0 be the Serre subcategory of H formed by the objects

of finite length. Then H0 =
∐

x∈X Ux (for some index set X) where Ux are connected

uniserial categories, called tubes. The objects in Ux are called concentrated in x.

Of course, any curve should also have the following property.

• X consists of infinitely many points.

We call X, equipped with H, a noncommutative (smooth, projective) curve.

It follows from the axioms (see [74]) that the quotient category H/H0 is the

category of finite dimensional vector spaces over some skew field k(H), called the

function field. We denote it also by k(X). The dimension over k(H) induces the

rank of objects in H. The full subcategory of H of objects which do not contain

a subobject of finite length is denoted by H+; these objects themselves are called

(vector) bundles. Bundles of rank one are called line bundles. The category H has

the Krull-Remak-Schmidt property, that is, each object is a finite direct sum of

essentially unique indecomposable objects. Moreover, each indecomposable object

lies either in H+ or in H0.

In the classical case where X is a smooth projective curve with structure sheaf

O, the genus of X is zero, that is, dimk Ext1X(O,O) = 0, if and only if the cat-

egory H = coh(X) contains a tilting object [69]. This is an object T ∈ H with

Ext1H(T, T ) = 0 and such that HomH(T, X) = 0 = Ext1H(T, X) only holds for

X = 0.

We therefore say that a noncommutative curve H is of (absolute) genus zero if

• H contains a tilting object.

Thus, a noncommutative curve of genus zero is just an exceptional curve as defined

in [68], a term which we will mainly use in these notes. (These curves are called

“exceptional” since the existence of a tilting object is equivalent to the existence

1



2 INTRODUCTION

of a complete exceptional sequence of objects in H.) In the case of genus zero the

request that there are infinitely many points is automatic.

In this setting noncommutativity occurs in two different styles:

(1) The curves are allowed to be “weighted” which gives a parabolic structure

on H. This means that there are some points x in which more than

one simple object is concentrated. Such a point x is called exceptional;

the other points are called homogeneous. We emphasize that for the

weighted curves additionally a genus in the orbifold sense (called virtual

genus in [66]) is of importance.

(2) There is a another kind of noncommutativity of an arithmetic nature,

determined by the function field k(H). This skew field is commutative

only in very special cases.

The first kind of noncommutativity arising by weights is well-known and the

phenomenon is described in its pure form by the weighted projective lines1 (over

an algebraically closed field) defined by Geigle-Lenzing [34]. Each weighted curve

of genus zero admits only finitely many exceptional points and has an underlying

homogeneous curve of genus zero (where all points are homogeneous) from which

it arises by so-called insertion of weights. Since this homogeneous curve has the

same function field, the homogeneous case and the associated arithmetic effects of

noncommutativity are the main topic of these notes.

In the following we assume this homogeneous case, which can be also expressed

in the following way.

• For all simple objects S ∈ H we have Ext1H(S, S) �= 0 (equivalently, τS �
S).

Such a homogeneous curve H has genus zero if and only if Ext1H(L, L) = 0

for one, equivalently for all line bundles L (which follows from [74]). In this case

the function field k(H) is of finite dimension over its centre which is an algebraic

function field in one variable [7]. Moreover, there is a tilting object T which con-

sists of two indecomposable summands, a line bundle L and a further indecom-

posable bundle L so that HomH(L, L) �= 0. The endomorphism ring EndH(T )

is a tame hereditary bimodule k-algebra. This underlying bimodule is given as

End(L)HomH(L, L)End(L).

We always consider H together with a fixed line bundle L which we consider

as a structure sheaf. This yields a projective coordinate algebra for H, depending

on the choice of a suitable endofunctor σ on H, and given as the orbit algebra with

respect to L and σ defined as

Π(L, σ) =
⊕
n≥0

HomH(L, σnL),

with multiplication given by the rule

g ∗ f
def
= σm(g) ◦ f,

where f ∈ Hom(L, σmL) and g ∈ Hom(L, σnL). Formation of orbit algebras is

a standard tool for obtaining projective coordinate algebras in algebraic geometry

1Even though in all of these cases we have graded coordinate rings and function fields
which are commutative, these curves are nonetheless noncommutative since the coherent sheaves
over an affine part correspond to (finitely generated) modules over a ring that is in general not
commutative.
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(although not under this name) and is frequently used in representation theory,

see [7, 65, 49]. Note that Π(L, σ) typically is noncommutative. M. Artin and J. J.

Zhang used orbit algebras to define noncommutative projective schemes [2] and to

prove an analogue of Serre’s theorem [102].

Let for example σ be the inverse Auslander-Reiten translation τ−. Then it is

easy to see that the pair (L, τ−) is a so-called ample pair ([2, 105]), and thus by

the theorem of Artin-Zhang [2, Thm. 4.5]

H � mod
Z
(Π(L, τ−))

modZ
0(Π(L, τ−))

,

the quotient category modulo the Serre subcategory of Z-graded modules of finite

length. Hence Π(L, τ−) is a projective coordinate algebra for X, and it coincides

with the (small) preprojective algebra defined in [7]. However the graded algebras

constructed in this way are often not practical for studying the geometry of X ex-

plicitly. For example, in the case of the projective line X = P1(k) over k (understood

in the scheme sense) we have

Π(L, τ−) = k[X2, XY, Y 2],

which consists of the polynomials in X and Y of even degree. This algebra is a

projective coordinate algebras for P1(k), as is the full polynomial algebra k[X, Y ],

graded by total degree. This example illustrates the well-known fact that projec-

tive coordinate algebras are not uniquely determined, and also that some projective

coordinate algebras are more useful than others. Of the two, only k[X, Y ] is graded

factorial.

Main results. We show that there exists a graded factorial coordinate algebra

in general, given as orbit algebra Π(L, σ) for a suitable autoequivalence σ on H. Of

course, one has to replace the usual factoriality by a noncommutative version.

The geometry of X is given by the hereditary category H. For this an un-

derstanding of the interplay between vector bundles and objects of finite length is

important. In particular, with the structure sheaf L, for each point x ∈ X and the

corresponding simple object Sx ∈ Ux the bimodule

End(Sx) Hom(L, Sx)End(L)

is of interest. By Serre duality this is equivalent to studying the bimodule

End(L) Ext1(Sx, L)End(Sx),

and this leads directly to the universal extension

0 −→ L
πx−→ L(x) −→ Se(x)

x −→ 0

with the multiplicity (originally defined by Ringel in [90])

e(x) = [Ext1(Sx, L) : End(Sx)].

The above universal extension (for L) is a special case of a more general construction

which leads to the tubular shift automorphism σx of H, sending an object A to A(x).

We realize the kernels πx (for each x ∈ X) as homogeneous elements in a

suitable orbit algebra. This is accomplished by an automorphism σ on H which we

call efficient (in 1.1.3). We show that such an automorphism always exists and has

the property that for any x the middle term L(x) in the universal extension is of

the form L(x) � σd(L) for some positive integer d, depending on x.
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The following theorem provides an explicit one-to-one correspondence between

points of X and homogeneous prime ideals of height one in Π(L, σ), given by forming

universal extensions.

Theorem. Let R = Π(L, σ) with σ being efficient. Let Sx be a simple sheaf
concentrated in the point x ∈ X. Let

0 −→ L
πx−→ σd(L) −→ Se

x −→ 0

be the Sx-universal extension of L. Then the element πx is normal in R, that is,
Rπx = πxR. Furthermore, Px = Rπx is a homogeneous prime ideal of height one.

Moreover, for any homogeneous prime ideal P ⊂ R of height one there is a
unique point x ∈ X such that P = Px.

In this way X becomes the projective prime spectrum of R. See 1.2.3 and 1.5.1

for the complete statements.

Since a commutative noetherian domain is factorial if and only if each prime

ideal of height one is principal, we say that a noetherian graded domain R, not

necessarily commutative, is a (noncommutative) graded factorial domain if each

homogeneous prime ideal of height one is principal, generated by a normal element.

This is a graded version of a concept introduced by Chatters and Jordan [13].

Corollary. Each homogeneous exceptional curve admits a projective coordi-
nate algebra which is graded factorial.

The following results clarify the role of the multiplicities e(x). The conclusion

is that they measure noncommutativity (“skewness”) in several senses:

Theorem. The function field of X is commutative if and only if all multiplic-
ities are equal to one.

See 4.3.1 for the complete statement; the commutative function fields are ex-

plicitly determined. Moreover:

• The multiplicities e(x) are bounded from above by the square root s(X)

of the dimension of the function field over its centre. More precisely, if

e∗(x) denotes the square root of the dimension of End(Sx) over its centre,

then always e(x) · e∗(x) ≤ s(X), and equality holds for all points x except

finitely many (2.2.13 and 2.3.5).

• In the graded factorial algebra R we have unique factorization in the sense

that each normal homogeneous element is an (essentially unique) prod-

uct of prime elements (which are by definition homogeneous generators

of prime ideals of height one). In contrast to the commutative case, a

prime element πx may factorize into a product of several irreducible ele-

ments. The number of these factors is essentially given by e(x) (see 1.6.5

and 1.6.6).

• We describe the localization RP at a prime ideal P . It turns out that RP

is a local ring if and only if the corresponding multiplicity e(x) is one;

otherwise RP is not even semiperfect (2.2.15).

Another surprising phenomenon due to noncommutativity is the occurrence of

so-called ghost automorphisms. Denote by Aut(X) the group of all (isomorphism

classes of) automorphisms of the category H fixing the structure sheaf L. Let

R = Π(L, σ) be the orbit algebra formed with respect to an efficient automorphism

σ. Every prime element πy ∈ R (that is, a normal element generating the prime



INTRODUCTION 5

ideal Py associated to the point y) induces a graded algebra automorphism γy on

R, given by the formula rπy = πyγy(r). This in turn induces an automorphism

γ∗
y ∈ Aut(X) whose action on the set of all points of X is invisible, but it is a non-

trivial element of Aut(X) if (under an additional assumption, see 3.2.4) for all units

u the element πyu is not central. This means that the functor γ∗
y fixes all objects

but acts non-trivially on morphisms. Such a functor we call a ghost automorphism.

The simplest example in which this effect arises is given by the curve X with

underlying bimodule M = C(C ⊕ C)C over k = R, where C acts from the right on

the second component via conjugation. A projective coordinate algebra is given by

the graded twisted polynomial ring R = C[X; Y, · ], graded by total degree, where

X is a central variable and for the variable Y we have Y a = aY for all a ∈ C. We

write R = C[X, Y ]. Then Y is a prime element which is not central (up to units).

It follows that complex conjugation induces a ghost automorphism of X. Moreover,

denote by σx and σy the (efficient) tubular shifts corresponding to the points x
and y associated with the prime ideals generated by X and Y , respectively. Then

C[X, Y ] = Π(L, σx) holds.

The following theorem expresses the interrelation between various automor-

phisms in more detail.

Theorem. Let R = Π(L, σ), where σ is efficient. Let πy be a prime element of
degree d in R, associated to the point y and γy the induced graded algebra automor-
phism. Let σy be the tubular shift associated to y. Then there is an isomorphism
of functors σy � σd ◦ γ∗

y .

The theorem contains important information about the structure of the Picard

group Pic(X), defined as the subgroup of Aut(H) generated by all tubular shifts

σx (x ∈ X). In particular, in contrast to the algebraically closed case, the Picard

group may not be isomorphic to Z.

In Chapter 5 we develop a technique which allows explicit calculation of the

automorphism group Aut(X) in many cases. We illustrate this for the preceding

example, where R = C[X, Y ]. The ghost group is the subgroup of Aut(X) consisting

of all ghost automorphisms.

Proposition. Let X be the homogeneous curve with projective coordinate al-
gebra R = C[X, Y ]. Then R = Π(L, σx), and Aut(X) is generated by

• the automorphism γ∗
y of order two, induced by complex conjugation, gen-

erating the ghost group;
• transformations of the form Y �→ aY for a ∈ R+;
• the automorphism induced by exchanging X and Y .

Moreover, the Picard group Pic(X) is isomorphic to Z×Z2, and for the Auslander-
Reiten translation the following formula holds true:

τ = σ−1
x ◦ σ−1

y = σ−2
x ◦ γ∗

y .

See Sections 5.3 and 5.4 for more general statements. In general the functo-

rial properties of the Auslander-Reiten translation have not been extensively stud-

ied. The preceding result shows that interesting effects appear. On objects the

Auslander-Reiten translation τ acts like σ−2
x , which agrees with the degree shift by

−2. But on morphisms the ghost automorphism induced by complex conjugation

enters the game.
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So far in this introduction we have concentrated on the homogeneous case.

These notes also deal with the weighted case. The following results show that the

problem of determining the geometry of an exceptional curve can often be reduced

to the homogeneous case.

• We show that insertion of weights into a central prime element in a graded

factorial coordinate algebra preserves the graded factoriality; the resulting

graded algebra is a projective coordinate algebra of a (weighted) excep-

tional curve (6.2.4).

• The automorphism group of a (weighted) exceptional curve is given by

the automorphisms of the underlying homogeneous curve preserving the

weights (6.3.1). In particular, both curves have the same ghost group.

The insertion of weights is particularly important for our treatment of the

tubular case in Chapter 8. The tubular exceptional curves have a strong relationship

to elliptic curves. They are defined by the condition that the so-called virtual

(orbifold) genus is one. The main feature of the tubular case is that, very similar to

Atiyah’s classification of vector bundles over an elliptic curve, H consists entirely

of tubular families. In fact, there is a linear form deg, called the degree, which

together with the rank rk defines the slope µ(X) = deg X
rk X of (non-zero) objects X

in H. Denote for q ∈ Q̂ = Q∪ {∞} by H(q) the additive closure of indecomposable

objects in H of slope q. Then H is the additive closure of all H(q), where q ∈ Q̂.

In case the base field is algebraically closed all the tubular families H(q) are

isomorphic to each other as categories, and moreover each is parametrized by the

curve X. The reason for this is that in this case the natural action of the automor-

phism group Aut(Db(H)) on the set Q̂ is transitive. This is not true in general over

an arbitrary base field. We show in Chapter 8 that in general this action may have

up to three orbits [53, 59]. Accordingly, there are up to three different tubular

exceptional curves which are Fourier-Mukai partners.

Another interesting effect treated in the same chapter is the occurrence of line

bundles which are not exceptional. Over an algebraically closed field each line bun-

dle L over an exceptional curve X is exceptional, that is, satisfies Ext1(L, L) = 0.

But this does not extend to arbitrary base fields, the simplest counterexamples ex-

isting in the tubular case. We characterize the tubular cases where non-exceptional

line bundles exist and show how they can be determined explicitly (Section 8.5).

Applications to finite dimensional algebras. The study of noncommuta-

tive curves of genus zero has strong applications in the representation theory of finite

dimensional algebras. Conjecturally these curves yield the natural parametrizing

sets for one-parameter families of indecomposable modules over finite dimensional

tame algebras. This is reflected by the definition of tame algebras over an alge-

braically closed field k, using as parametrizing curves (affine subsets of) the pro-

jective line P1(k), and in a certain sense this “explains” that in Drozd’s Tame and

Wild Theorem [32, 17] only rational one-parameter families occur. Note that in

the algebraically closed case P1(k) is the only homogeneous curve of genus zero.

For the class of tame hereditary algebras and the class of tame canonical al-

gebras [92] over an arbitrary field it is well-known that the parametrizing sets are

precisely the (affine) curves of genus zero. For a tame algebra, in general more

than one exceptional curve is needed to parametrize the indecomposables: there is

a tubular (canonical) algebra which requires three such curves (Section 8.3).
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It is important to study representation theory over arbitrary base fields since

many applications deal with algebras defined over fields which are not algebraically

closed. For example, the base field of real numbers is of interest for applications

in analysis, the field of rational numbers for number theory, finite fields for the

relationships to quantum groups (like Ringel’s Hall algebra approach), etc.

When attempting to generalize statements first proven over algebraically closed

fields to arbitrary base fields, three typical scenarios of different nature can be

observed. Frequently statements and proofs carry over to the more general situation

without essential change. Also often the statements remain true but require new

proofs, frequently leading to better insights and streamlined arguments even for

the algebraically closed case2. On the other hand, in a significant number of cases

completely new and unexpected effects occur, causing the statements to fail in the

general case. The present notes focus in particular on these kinds of new effects.

The representation theoretical analogues of the exceptional curves X and their

hereditary categories H are given by the concealed canonical algebras [70] and

their module categories mod(Λ). The link between the two concepts is given by an

equivalence Db(H) � Db(mod(Λ)) of derived categories which leads to a translation

between geometric and representation theoretic notions. We illustrate this in the

typical case where Λ is a tame hereditary algebra: the subcategory H0 of objects

of finite length corresponds to the full subcategory R of mod(Λ) formed by the

regular representations. Simple objects Sx in H correspond to simple regular rep-

resentations. Vector bundles correspond to preprojective (or preinjective) modules,

line bundles L to preprojective modules P (or preinjective modules) of defect −1

(or 1, respectively). In particular, the multiplicities e(x) are also definable in terms

of preprojective modules of defect −1 and simple regular representations. The

function field of X agrees with the endomorphism ring of the unique generic [19]

Λ-module. The importance of the generic module for the representation theory of

tame hereditary algebras is demonstrated in [90]. Our results on exceptional curves

all have direct applications to representation theory. In particular:

• Let Λ be a tame hereditary algebra. The (small) preprojective algebra⊕
n≥0

HomΛ(P, τ−nP ),

where P is a projective module of defect −1 and τ− is the (inverse)

Auslander-Reiten translation on mod(Λ), is a graded factorial domain

if the underlying tame bimodule is of dimension type (1, 4) (or (4, 1))3.

Note that the (small) preprojective algebra contains the full information

on Λ and its representation theory.

• In general there are automorphisms of Db(mod(Λ)) fixing all objects but

acting non-trivially on morphisms, contrary to the algebraically closed

case.

• A tubular algebra requires up to three different projective curves of genus

zero to parametrize the indecomposable modules.

2Some examples for this can be seen in the results of Happel and Reiten about the charac-

terization of hereditary abelian categories with tilting object ([39], generalizing [38]) and in the
proof of the transitivity of the braid group action on complete exceptional sequences for hereditary
Artin algebras by Ringel ([94], generalizing [20]) and by Meltzer and the author for exceptional
curves ([60], summarized in Section 7.1), generalizing [78].

3This is also true for many tame bimodules of dimension type (2, 2).
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• A tubular algebra admits generic modules with up to three different (non-

isomorphic) endomorphism rings.

• The endomorphism ring of the generic module over a tame hereditary

algebra is commutative if and only if all multiplicities are equal to one,

a condition automatically satisfied over algebraically closed base fields.

It is surprising that this condition, which essentially says that the mor-

phisms between preprojective and regular representations behave “well”,

yields the commutativity of the generic module’s endomorphism ring, and

conversely.

The results on the function field also provide an explanation of the strange fact

(pointed out in [90]) that a bimodule like RHH, given by noncommutative data,

leads to a commutative function field

Quot
(
R[U, V ]/(U2 + V 2 + 1)

)
,

whereas a bimodule like QQ(
√

2,
√

3)Q(
√

2,
√

3), given by commutative data, leads to

a noncommutative function field, the quotient division ring of

Q〈U, V 〉/(UV + V U, V 2 + 2U2 − 3).

There are a number of inspiring papers dealing with tame hereditary alge-

bras. For example, those by Dlab and Ringel on bimodules and hereditary alge-

bras [24, 89, 27, 26, 29] (see additionally [28, 22, 23]), in particular Ringel’s

Rome proceedings paper [90], as well as those by Lenzing [64], Baer, Geigle and

Lenzing [7], and by Crawley-Boevey [18], dealing with the structure of the param-

eter curves for tame hereditary algebras over arbitrary fields.

By perpendicular calculus and insertion of weights many problems for concealed

canonical algebras (and in particular for tame hereditary algebras) can be reduced

to the special class of tame bimodule algebras. This means that we often may

restrict our attention to a tame hereditary k-algebra of the form Λ =

(
G 0
M F

)
,

where M = F MG is a tame bimodule over k, that is, the product of the dimensions

of M over the skew fields F and G, respectively, equals 4. These are the analogues

of the Kronecker algebra

(
k 0

k2 k

)
, which is isomorphic to the path algebra of the

following quiver.

• •
In this homogeneous case X parametrizes the simple regular representations of

Λ. This situation was studied in the cited papers by Dlab and Ringel, by Baer,

Geigle and Lenzing, and by Crawley-Boevey. Over the real numbers the structure

of X as topological space is described explicitly in [24, 25, 26]. In [89, 29] and

more generally in [18] an affine part of X is described by the simple modules over a

(not necessarily commutative) principal ideal domain. In [18] additionally a (com-

mutative) projective curve is constructed, which parametrizes the points of X and

is the centre of the noncommutative projective curves considered in [64] and [7].

A model-theoretic approach using the Ziegler spectrum is described by Prest [86]

and Krause [51, Chapter 14]. One advantage provided by the present notes is that

the geometry of X is described in terms of graded factorial coordinate algebras.

This is useful in particular for studying the properties of the sheaf category H
by forming natural localizations (Chapter 2) and for analyzing the automorphism

group of Db(H) (Chapter 3). It is also exploited in our proof of the characterization
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of the commutativity of the function field in terms of the multiplicities (Section 4.3).

We have seen that several new and surprising phenomena occur when an ar-

bitrary base field is allowed. Along the way, we will point out several interesting

open problems. The following are particularly worth mentioning:

• Find graded factorial projective coordinate algebras for all weighted cases

(by a suitable method of inserting weights also into non-central prime

elements).

• Determine the ghost group in general. Describe the action of the

Auslander-Reiten translation on morphisms in general.

• The function field k(X) is always of finite dimension over its centre. Is

the square root of this dimension always the maximum of the multiplicity

function e? Describe each multiplicity e(x) in terms of the function field.

• Is it true that the completions R̂ of the described graded factorial algebras

R are factorial again?

These notes are based on the author’s Habilitationsschrift with the title “As-

pects of hereditary representation theory over non-algebraically closed fields” ac-

cepted by the University of Paderborn in 2004. The present version includes further

recent results, in particular those concerning the multiplicities in Chapter 2.

We assume that the reader is familiar with the language of representation the-

ory of finite dimensional algebras. We refer to the books of Assem, Simson and

Skowroński [3], of Auslander, Reiten and Smalø [5], and of Ringel [91].
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CHAPTER 0

Background

In this preliminary chapter we describe the setting and present the background

material from the literature which will be used later. The main parts of this work

will start with Chapter 1. We recommend to browse through this chapter or even

start reading the work with Chapter 1 and look up items here when necessary.

0.1. Notation

We work over an arbitrary field k. If not otherwise specified, all categories will

be k-categories and all functors will be k-functors and covariant. If the isomorphism

classes of objects in a category C form a set, then we call C small. (This is often

called skeletally-small in the literature.) If X is an object in C we write X ∈ C
instead of X ∈ Ob(C).

All rings and algebras are associative with identity. If not otherwise specified,

by modules we mean right modules, and all modules are unitary. The category of

all R-modules is denoted by Mod(R). The full subcategory of finitely presented R-

modules is denoted by mod(R). Since we will only consider noetherian situations,

these are just the finitely generated modules. If R is an algebra graded by an

abelian group H we denote by Mod
H

(R) the category of H-graded R-modules; the

morphisms are those of degree zero. The subcategory modH(R) is similarly defined

like in the ungraded situation.

0.2. One-parameter families, generic modules and tameness

In this section we briefly recall the notions of one-parameter families and tame-

ness. Although we will not explicitly use these facts later in the text, they serve as

one of the main motivations.

In the representation theory of finite dimensional algebras certain modules often

form sets with geometric structure. By the Tame and Wild Theorem of Drozd [32]

(see also [17]) the indecomposable modules over a non-wild (= tame) finite di-

mensional algebra over an algebraically closed field k essentially lie in rational one-

parameter families, that is, families indexed by (an affine part of) the projective line

P1(k). (We use the rather unusual notation k in order to stress that temporarily

the field is assumed to be algebraically closed.)

0.2.1. Let A be a finite dimensional algebra over an algebraically closed field

k. Let M be a k[T ]-A-bimodule which is free of finite rank as left k[T ]-module.

Consider the associated functor

FM = −⊗k[T ] M : mod(k[T ]) −→ mod(A).

11
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For each λ ∈ k let Sλ be the simple k[T ]-module k[T ]/(T − λ). If all the images

FM (Sλ) are indecomposable and pairwise non-isomorphic, then {FM (Sλ)}λ∈k is

called an affine one-parameter family (of indecomposable modules).

0.2.2 (Tame algebras). Let A be a finite dimensional algebra over an alge-

braically closed field k. Then A is called tame, if for each natural number d almost

all indecomposable A-modules of dimension d lie in a finite number of affine one-

parameter families, that is, given d there are finitely many k[T ]-A-bimodules Mi,

free of finite rank over k[T ], such that all but finitely many indecomposable A-

modules of dimension d are isomorphic to FMi
(Sλ) for some i and some λ ∈ k.

0.2.3 (Generic modules). In the study of one-parameter families the concept of a

generic module is important ([19], also [50]). An A-module M is called generic [19],

if it is indecomposable, of infinite length over A, but of finite length over its endo-

morphism ring. Note that for each affine one-parameter family, given by a functor

FM , a generic A-module is given by FM (k(T )), where k(T ) is the field of rational

functions in one variable.

Crawley-Boevey [19] has shown that, over an algebraically closed field, A is

tame if and only if for any natural number d there is only a finite number of generic

modules of endolength d. (In the latter case one also says that A is generically
tame. This notion makes sense over any field.) He showed that in this case the

generic modules correspond to the one-parameter families.

0.2.4 (The Kronecker algebra). The Kronecker algebra Λ over an algebraically

closed field k provides the prototype of a tame algebra as well as of a one-parameter

family. It is defined to be the path algebra of the quiver

• •

and is isomorphic to Λ =

(
k 0

k
2

k

)
, where k

2
= k⊕k is considered as k-k-bimodule.

The module category mod(Λ), as well as its Auslander-Reiten quiver, has a partic-

ular simple shape, it is trisected

mod(Λ) = P ∨R ∨Q,

where P is the preprojective component, consisting of the Auslander-Reiten orbits

of two projective indecomposables, Q is the preinjective component, consisting of

the Auslander-Reiten orbits of two injective indecomposables, and R consists of the

regular indecomposable modules, all lying in homogeneous tubes. One can say that

P and Q form the discrete part of mod(Λ) and R forms the continuous part, since

the tubes are parametrized by the projective line P1(k). Moreover, if one forms the

category

H def
= Q[−1] ∨ P ∨R

inside the bounded derived category of mod(Λ), then H is equivalent to coh(P1(k)),

the category of coherent sheaves over P1(k).

The regular indecomposable modules of a fixed dimension form the one-param-

eter families for Λ (leave out one tube for an affine family). The regular part R
itself forms a separating tubular family.
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There is (up to isomorphism) precisely one generic Λ-module, given by the

representation

k(T )
1

·T
k(T ) ,

where k(T ) is the field of rational functions in one variable, which is the function

field of P1(k); the endomorphism ring of this generic module is k(T ).

Let A be a tame k-algebra. By Drozd’s theorem all one-parameter families for

A are rational. In all known examples these parametrizations can be realized by a

functor mod(Λ) −→ mod(A).

0.2.5. Over an arbitrary field k there is still no convenient definition of tameness.

The definition of generically tameness makes sense over any field and has many

advantages, but it does not capture the geometric flavour of one-parameter families.

One should expect that an extension of Drozd’s Tame and Wild Theorem over

arbitrary field k holds in the sense that, roughly speaking, the indecomposable finite

dimensional modules over any non-wild finite dimensional k-algebra lie essentially in

one-parameter families which are indexed by (affine parts of) the noncommutative

curves of genus zero. The projective line is related to the Kronecker algebra, just

as the noncommutative curves of genus zero are related (up to weights) to the tame

bimodules M = F MG and their associated hereditary algebras

Λ =

(
G 0

M F

)
,

which were studied by Dlab and Ringel in several papers (for example [24, 89, 29],

to name a few). Therefore the tame bimodules are of fundamental importance in

the study of one-parameter families. Note that in general different one-parameter

families of genus zero for a fixed finite dimensional k-algebra may be induced by

different tame bimodules over k, as the discussion in Chapter 8 shows.

0.2.6 (The weighted case). In general one has do deal with the so-called weighted

case which leads to the study of the canonical algebras and to the weighted pro-

jective lines (as Ringel pointed out in his survey [93]). Over algebraically closed

fields, the canonical algebras were defined by Ringel [91] and the weighted pro-

jective lines by Geigle and Lenzing [34]. Both definitions were later extended to

arbitrary fields. In the case of the canonical algebras this was done by Ringel and

Crawley-Boevey [92], in the case of the weighted projective lines by Lenzing [68]

who called the more general objects exceptional curves. The canonical algebras

can be characterized (essentially up to tilting equivalence) as the class of finite

dimensional algebras admitting a separating tubular family [70]. These tubular

families are parametrized by the exceptional curves. The tame bimodule algebras

correspond to the subclass of finite dimensional algebras whose tubes are all homo-

geneous. So we call the tame bimodule case also the homogeneous or unweighted

case, the general case also the weighted case.

By some general techniques (perpendicular calculus [35]), insertion of weights

[68]) the general, weighted case can be reduced essentially to the homogeneous case.

Therefore, main parts of this article are concerned with the homogeneous case.
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0.3. Canonical algebras and exceptional curves

In this section we describe briefly the general class of finite dimensional alge-

bras admitting a separating tubular family. This is the class of concealed canoni-

cal algebras, which contains the class of canonical algebras and the class of tame

hereditary algebras, in particular tame bimodule algebras. These algebras have as

geometric counterpart the exceptional curves. These curves correspond to the con-

cealed canonical algebras via tilting theory, and accordingly are derived equivalent

to the corresponding algebra. Thus the study of (concealed) canonical algebras is

essentially equivalent to the study of exceptional curves. Since we are interested

in the geometrical aspects of algebras, we prefer in this paper the usage of the

language and theory of the exceptional curves.

0.3.1 (Concealed canonical algebras). Let k be a field and Σ a finite dimensional

k-algebra, which is assumed to be connected. Denote by mod(Σ) the category

of finitely generated right Σ-modules. Then Σ is concealed canonical ([70], see

also [104]) if and only if mod(Σ) contains a sincere separating exact subcategory
mod0(Σ). This means

• Exactness. mod0(Σ) is an exact abelian subcategory of mod(Σ), which is

stable under Auslander-Reiten translation τ = D Tr and τ− = TrD

• Separation. Each indecomposable from mod(Σ) belongs either to

mod0(Σ) or to mod+(Σ), which consists of all M ∈ mod(Σ) such that

Hom(mod0(Σ), M) = 0, or to mod−(Σ), which consists of all N ∈ mod(Σ)

such that Hom(N, mod0(Σ)) = 0.

• Sincerity. For each non-zero M ∈ mod+(Σ) there is a non-zero morphism

from M to mod0(Σ) and for each non-zero N ∈ mod−(Σ) there is non-zero

morphism from mod0(Σ) to N .

• Stability. Each projective module belongs to mod+(Σ) and each injective

module to mod−(Σ).

0.3.2. The most prominent classes of examples are the following:

(1) The canonical algebras, as defined by Ringel and Crawley-Boevey in [92].

Actually, every concealed canonical algebra is tilting equivalent to a canonical al-

gebra. A canonical algebra is defined to be the tensor algebra of a species

D1
D1

D1 · · · D1
D1

D1

D2
D2

D2 · · · D2
D2

D2

F
F MG

G

...
...

...
...

Dt
Dt

Dt · · · Dt
Dt

Dt

modulo certain relations (for details we refer to [92]). Here, F MG is a tame bi-

module (see 0.3.16 below), and there are t arms, the i-th arm of length pi ≥ 1,

and the Di are finite dimensional skew fields over k, with k lying in their centres.

Moreover, there are F -Di-bimodule Ui and Di-G-bimodules Vi (k acting centrally)

on the arrows starting in the source and ending in the sink, respectively.
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(2) The tame hereditary algebras. In particular, the tame bimodule algebras

(see 0.3.16 and 0.5.1). Actually, by the so-called insertion of weights [68], and

by the perpendicular calculus [35], two processes which are inverse to each other,

many problems for concealed canonical algebras can be reduced to the special class

of tame bimodule algebras. (We will explain this in 0.3.16.)

0.3.3 (Separating tubular family). A sincere separating exact subcategory

mod0(Σ) defines a separating tubular family of stable tubes [92]: there is the

coproduct of categories

mod0(Σ) =
∐
x∈X

Ux,

where Ux are connected, uniserial length categories, containing neither non-zero

projective nor non-zero injective modules. The full subcategory Tx = ind(Ux) of

indecomposable objects in Ux is called a stable tube. Moreover, each non-zero

morphism from an object in mod+(Σ) to an object in mod−(Σ) factorizes through

any prescribed tube Ux.

0.3.4 (Associated hereditary category). In the preceding coproduct, X is an

index set, which is equipped with geometric structure. In [70] there is defined an

associated hereditary abelian k-category H. Hereditary means that Exti
H(−,−) = 0

for all i ≥ 2. Roughly speaking, to construct H one takes the union of mod0(Σ)

and mod+(Σ) and forms inside the bounded derived category Db(mod(Σ)) (see [37])

the closure of this union under all inverse shift automorphisms defined to tubes in

mod0(Σ). By the construction it is immediate that the categories H and mod(Σ)

are derived equivalent.

In the most important special case when Σ is a tame bimodule algebra we

describe the category H more explicitly in 0.5.1.

0.3.5 (Bundles/objects of finite length). Denote by H0 (H+, respectively) the

full subcategory of H of objects of finite length (of objects, not containing objects

�= 0 of finite length, respectively). Then each indecomposable object in H is either

in H0 or in H+, and HomH(H0,H+) = 0. The objects of H (H+, respectively) are

also called sheaves (vector bundles or torsionfree, respectively). By construction of

H we have H0 = mod0(Σ) =
∐

x∈X Ux.

0.3.6 (Exceptional curves). X, together with the category H, is called an excep-
tional curve [68], and one sometimes writes H = coh(X). This class of categories H
is characterized independently of the construction above by the following properties:

• H is a connected small abelian k-category with finite dimensional mor-

phism and extension spaces.

• H is hereditary and noetherian and contains no non-zero projective object.

• H admits a tilting object (see the following number).

0.3.7 (Tilting object). T ∈ H is called a tilting object , if

• Ext1H(T, T ) = 0, and

• If X ∈ H, then HomH(T, X) = 0 = Ext1H(T, X) implies X = 0.

A tilting object lying in H+ is called a tilting bundle.

There exists even a tilting bundle T such that EndH(T ) is a canonical algebra

([70, Prop. 5.5]).
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0.3.8 (Exceptional object). An object E in H is called exceptional if it is

indecomposable and Ext1H(E, E) = 0. It follows then by an argument by Happel

and Ringel [41] that EndH(E) is a skew field.

0.3.9 (Serre duality). For an exceptional curve there is an autoequivalence τ
on H such that Serre duality

Ext1H(X, Y ) � DHomH(Y, τX)

holds functorially in X, Y ∈ H, where D is the duality Homk(−, k).

Since the category H is hereditary, the (bounded) derived category Db(X)
def
=

Db(H) = Db(Σ) is just the repetitive category of coh(X). Moreover, H has almost

split sequences and the Serre functor τ : H −→ H serves as Auslander-Reiten

translation. Denote by τ− the inverse Auslander-Reiten translation.

0.3.10 (Grothendieck group). Denote by K0(X) the Grothendieck group of H.

Since H and mod(Σ) have the same bounded derived category, we have K0(X) =

K0(Σ), and this is a free abelian group of finite rank. We denote by [X] the class

in K0(X) of an object X ∈ H.

K0(X) is equipped with the (normalized) Euler form 〈−,−〉. This bilinear form

is defined on classes of objects X, Y in H by

〈[X], [Y ]〉 =
1

m

(
dimk HomH(X, Y ) − dimk Ext1H(X, Y )

)
,

where m is a positive integer such that the image of the resulting bilinear form

generates Z.

The Auslander-Reiten translation τ induces the Coxeter transformation, which

we also denote by τ (by a slight abuse of notation), and which is an automorphism

on K0(X) = K0(Σ) preserving the Euler form. The radical of K0(X) is defined by

Rad(K0(X)) = {x ∈ K0(X) | τx = x}.
0.3.11 (Weights). For each x ∈ X let p(x) be the rank of the tube Tx. That is,

p(x) is the number of isomorphism classes of simple objects in Ux. The tube Tx, or

the point x, is called homogeneous ([91]) , if p(x) = 1, exceptional otherwise. X is

called homogeneous if all p(x) = 1. Clearly, a point x is exceptional if and only if

a simple object Sx in Ux is exceptional.

Each exceptional curve admits only a finite number of exceptional points. De-

note by x1, . . . , xt ∈ X the exceptional points. We call the numbers pi = p(xi) > 1

weights, accordingly (p1, . . . , pt) the weight sequence.

0.3.12 (Rank). We define the rank of sheaves: Let x0 ∈ X, and let S0 be

a simple sheaf in the tube Ux0 of rank p0. Let w :=
∑p0−1

j=0 [τ jS0], which is an

element of Rad K0(X). By [70] we can assume that x0 is a so-called rational point

(see 0.4.4), that is, Zw is a direct summand of Rad K0(X). After normalizing the

linear form 〈−,w〉 on K0(X) by the factor c := [Z : 〈K0(X),w〉], we get a surjective

linear form, compatible with the Coxeter transformation: For each x ∈ K0(X)

define rkx := 1
c 〈x,w〉, and moreover rk(X) = rk([X]) for each X ∈ H. Let X ∈ H

be indecomposable. Then rk(X) = 0 if and only if X ∈ H0; if X ∈ H+, then

rk(X) > 0.

0.3.13 (Function field). The quotient category of H modulo the Serre subcat-

egory H0, formed by the objects of finite length, is equivalent to the category of

finite dimensional vector spaces over some skew field which is (up to isomorphism)
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uniquely determined by X. We call this skew field the function field . We denote it

by k(X) = k(H):

H/H0 � mod(k(X)).

We call an exceptional curve X commutative if the function field k(X) is commuta-

tive.

The function field is known to be of finite dimension over its centre and to be

an algebraic function (skew) field of one variable over k (in the sense of [106]),

see [7].

If L ∈ H+ is a line bundle, that is, of rank one, then k(X) is isomorphic to

the endomorphism ring of L considered as object in H/H0 (given by fractions of

morphisms of the same degree). Moreover, the rank of an object X ∈ H agrees

with the dimension of the vector space over k(X) corresponding to X considered as

object in H/H0.

The function field coincides with the endomorphism ring of the generic module

associated with the separating tubular family mod0(Σ) and was already studied in

detail in [90].

0.3.14 (Special line bundle). From each of the exceptional tubes choose a simple

sheaf Si ∈ Uxi
. Note that these simple sheaves are exceptional. In the following

let L ∈ H+ be a line bundle, and assume additionally that for each i ∈ {1, . . . , t}
we have Hom(L, τ jSi) �= 0 if and only if j ≡ 0 mod pi. Such a line bundle L
exists by [70, Prop. 4.2] and is called special . It follows from [70, 5.2] that L is

exceptional, since EndH(L) is a skew field and a := [L] is a root in K0(X). Recall

from [66, 57] that v ∈ K0(X) is a root if 〈v,v〉 > 0 and
〈v,x〉
〈v,v〉 ∈ Z for all x ∈ K0(X).

For example, the class of an exceptional object is a root. Moreover, an exceptional

object is uniquely determined (up to isomorphism) by its class.

In the sequel, we will always consider H together with a special line bundle L,

also called a structure sheaf . Of course, if X is homogeneous then each line bundle

is special.

0.3.15 (Degree). Let p be the least common multiple of the weights p1, . . . , pt.

Define 〈〈−,−〉〉 :=
∑p−1

j=0〈τ j−,−〉 and define the degree function deg : K0(X) −→ Z
by

deg x :=
1

c

(
〈〈a,x〉〉 − rkx〈〈a, a〉〉

)
,

where as above a = [L].

0.3.16 (Underlying tame bimodule). Let L be a special line bundle

and S1, . . . , St simple objects from the different exceptional tubes such that

Hom(L, Si) �= 0. Let S = {τ jSi | 1 ≤ i ≤ t, j �≡ −1 mod pi}. Then the right

perpendicular category S⊥ is equivalent to mod(Λ), where Λ is a tame hereditary

k-algebra of the form

Λ =

(
G 0

M F

)
,

where M = F MG is a tame bimodule (also called affine bimodule), that is:

• F and G are skew fields, finite dimensional over k;

• k lies in the centres of F and G and acts centrally on M .

• For the dimensions, [M : F ] · [M : G] = 4;
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We say that M is a (tame) bimodule of (dimension) type (2, 2), (1, 4) or (4, 1) if

this pair is ([M : F ], [M : G]). We call the number ε ∈ {1, 2} the numerical type of

M (or of X), which is defined by

ε =

{
1 if M is of type (2, 2).

2 if M is of type (1, 4) or (4, 1).

The numerical type is an invariant of the curve X.

With κ := 〈[L], [L]〉, for the normalization factor c = [Z : 〈K0(X),w〉] as above

we have c = κε.

0.3.17 (Automorphism groups). Let X be an exceptional curve with associ-

ated abelian hereditary category H and structure sheaf L. Denote by Aut(H) the

automorphism class group of H, that is, the group of isomorphism classes of au-

toequivalences of H (in the literature sometimes also called the Picard group [8],

which has a different meaning in our presentation). We call this group the auto-
morphism group of H and call the elements automorphisms. (If there is need to

emphasize the base field k, we also write Autk(X) and use a similar notation in

analogue situations.)

By a slight abuse of terminology, we will also call the autoequivalences them-

selves automorphisms, that is, the representatives of such classes; if F is an autoe-

quivalence, then its class in the automorphism group is also denoted by F .

The subgroup of elements of Aut(H) fixing L (up to isomorphism) is denoted

by Aut(X), the automorphism group of X. (We will later see that this group does

not dependent on L.)

Each element φ ∈ Aut(H) induces a bijective map φ on the points of X by

φ(Ux) = Uφ(x) for all x ∈ X. We call φ the shadow of φ. If φ lies in the kernel of the

homomorphism Aut(H) −→ Bij(X), φ �→ φ, then we call φ point fixing (or invisible
on X). If φ(x) = x we also say (by a slight abuse of terminology) that the point x
is fixed by φ. Similarly, if φ(x) = y we also write φ(x) = y.

Denote by Aut0(H) the (normal) subgroup of Aut(H) given by the point fixing

automorphisms.

Non-trivial elements of Aut(X) which are point fixing are called ghost automor-
phisms , or just ghosts . The subgroup G of Aut(X) formed by the ghosts is called the

ghost group. It is a normal subgroup of Aut(H). We have G = Aut(X) ∩ Aut0(H).

We call the factor group Aut(X)/G the geometric automorphism group of X, its

elements geometric automorphisms . By a slight abuse of terminology, we also call

the elements in Aut(X) which are not ghosts geometric.

Denote by Aut(Db(X)) the group of isomorphism classes of exact autoequiva-

lences of the triangulated category Db(X), called the automorphism group of Db(X).

(Compare also [9]. There is also the related notion of the derived Picard group [82].)

0.3.18 (Projective coordinate algebras). Let H be a finitely generated abelian

group of rank one, which is equipped with a partial order ≤, compatible with the

group structure. Let R =
⊕

h∈H Rh be an H-graded k-algebra, such that each

homogeneous component Rh is finite dimensional over k and such that Rh = 0 for

0 �≤ h. Assume moreover that R is a finitely generated k-algebra and noetherian.

Note that we do not require that R is commutative.

Denote by modH(R) the category of finitely generated right H-graded R-

modules, and by modH
0 (R) the full subcategory of graded modules of finite length
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(which is equivalent to finite k-dimension). This is a Serre subcategory of modH(R),

that is, it is closed under subobjects, quotients and extensions. The quotient cat-

egory modH(R)/ modH
0 (R) is taken in the Serre-Grothendieck-Gabriel sense. We

refer to [85].

Then the graded algebra R is called a projective coordinate algebra for X if

there is an equivalence of categories

H � modH(R)

mod
H
0 (R)

.

Each exceptional curve admits a projective coordinate algebra, even a Z-graded one

(see 6.2.1). Thus, in the terminology of [2], H is a (noncommutative) noetherian

projective scheme.

Note that a projective coordinate algebra is not uniquely determined by X.

One of the main aims of this article is to show that there is a projective coordinate

algebra with “good” ringtheoretical properties.

0.4. Tubular shifts

One of the most important concepts we will use in these notes is that of shift

automorphisms as developed in [70], which is a particular class of tubular muta-

tions [71, 79, 80]. For the details we refer to [70]. Since we will also deal with

the degree shift of graded objects, we will call a shift automorphism in the sense

of [70] a tubular shift or just shift associated to a point .

0.4.1. Let X be an exceptional curve with associated hereditary category H
and tubular family H0 =

∐
x∈X Ux, with connected uniserial length categories Ux

which are pairwise orthogonal. We fix a point x ∈ X of weight p(x). Let Sx be a

simple object in Ux, denote by Sx additive closure of the Auslander-Reiten orbit of

Sx, which consists of the semisimple objects from Ux.

Let M be an object. By the semisimplicity of the category Sx, for the object

Mx =

p(x)⊕
j=1

Ext1(τ jSx, M) ⊗End(Sx) τ jSx

there is a natural isomorphism of functors

(0.4.1) ηM : Hom(−, Mx)|Sx

∼−→ Ext1(−, M)|Sx
,

which by the Yoneda lemma can be viewed as short exact sequence

ηM : 0 −→ M
αM−→ M(x)

βM−→ Mx −→ 0

such that the Yoneda composition Hom(U, Mx) −→ Ext1(U, M), f �→ ηM · f is

an isomorphism for each U ∈ Sx. ηM is called the Sx-universal extension of

M . (If p(x) = 1 we also call it Sx-universal.) By means of the identification

Hom(−, Mx)|Sx
= Ext1(−, M)|Sx

the assignment M �→ Mx extends to a functor

u �→ ux for each u : M −→ N such that u · ηM = ηN · ux. Then Mx (ux) is called

the fibre of M (of u, resp.) in x.

Similarly, let

xM =

p(x)⊕
j=1

Hom(τ jSx, M) ⊗End(Sx) τ jSx.
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Then there is a natural isomorphism γM : Hom(−, xM)|Sx
−→ Hom(−, S)|Sx

,

which corresponds to a morphism γM : xM −→ M , called Sx-universal .

0.4.2. Denote by Nx the full subcategory of H consisting of objects M such

that Hom(Ux, M) = 0. There is an autoequivalences σx : H −→ H associated to

the point x or the tube with index x, therefore called tubular shift associated to x,

with the following properties:

(1) For each M ∈ Nx the object σx(M) agrees with M(x). Moreover, if

also N ∈ Nx and u ∈ Hom(M, N), then σx(u) agrees with the unique

morphism u(x) making the following diagram commutative

0 M
αM

u

M(x)
βM

u(x)

Mx

ux

0

0 N
αN

N(x)
βN

Nx 0.

More precisely, u(x) is already uniquely determined by commutativity of

the left hand square.

(2) Let 0 −→ M
f−→ M ′ g−→ C −→ 0 be a short exact sequence such that

M , M ′ ∈ Nx and C � Mx. Then there is a commutative exact diagram

0 M
αM

M(x)
βM

Mx 0

0 M
f

M ′ g

�

C

�

0.

(In fact, the isomorphism Hom(C, Mx) � Ext1(C, M) implies the pullback

diagram above. In this diagram, the map C −→ Mx is monic, since its

kernel is a subobject of M ′ ∈ Nx. Since C and Mx have the same length,

the map is also epic.)

(3) M ∈ H+ implies σx(M) ∈ H+.

(4) If y �= x then there is a natural isomorphism σx ◦σy � σy ◦σx. On Uy the

tubular shift σx acts functorially as the identity.

(5) If M ∈ Ux then there is the exact sequence

0 −→ xM
γM−→ M −→ σx(M) −→ Mx −→ 0.

σx acts on objects in Ux like τ−.

(Remark: Assume that x ∈ X is homogeneous. Then it is not true in

general that the tubular shift σx or the Auslander-Reiten translation τ
coincides with the identity functor on the homogeneous tube Ux. This

will be shown in 5.4.2 and 5.4.3.)

(6) There is a natural transformation εx : 1H −→ σx, coinciding on Nx with

α. This natural transformation is also denoted by 1H
x−→ σx.

(7) On K0(X), σx induces the automorphism

y �→ y −
p(x)∑
j=1

〈y, [τ jSx]〉
|End(Sx)| [τ

jSx],

where | − | denotes the dimension over k.
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0.4.3 (Multiplicity [90, 70]). As special case we have: Let L be a special line

bundle with Ext1(Sx, L) �= 0. Then the Sx-universal extension of L has the form

0 −→ L −→ L(x) −→ Se(x)
x −→ 0,

with e(x) = [Ext1(Sx, L) : End(Sx)]. The number e(x) is called the multiplicity of

x. It does not dependent on the choice of the special line bundle L. By Serre duality,

e(x) coincides with [Hom(L, τSx) : End(Sx)]. A point x is called multiplicity free
if e(x) = 1. The exceptional curve X is called multiplicity free ([90]) if e(x) = 1

holds for all x ∈ X.

0.4.4 (Index). With the notations as in the preceding number, the dimension

f(x) = 1
ε ·[Ext1(Sx, L) : End(L)] is called the index of x. (Recall, that ε denotes the

numerical type of X.) A point x is called rational if f(x) = 1. Such a point always

exists [70, Prop. 4.1]. We call a homogeneous point x unirational if e(x) = 1 = f(x).

Such a point does not always exist, compare 0.6.1.

The product e(x) · f(x) is denoted by d(x) and called the exponent of x.

0.4.5 (Symbol). Let x1, . . . , xt ∈ X be the exceptional points with weights

pi = p(xi), and let fi = f(xi) the index and di = d(xi) the exponent of the point xi

(i = 1, . . . , t). Let ε be the numerical type of X. Following [66] we call the matrix

σ[X] = σ∞[X] =

⎛⎝ p1, . . . , pt

d1, . . . , dt ε
f1, . . . , ft

⎞⎠
the symbol of X. (We make the convention, that rows of the form 1, 1, . . . , 1 and

the entry ε = 1 are omitted in the notation of the symbol.)

For a point x ∈ X we call the numbers p(x), f(x) and e(x) (or d(x)) together

also the symbol data of x. For any simple object Sx concentrated in x such that

Hom(L, Sx) �= 0 we have [Hom(L, Sx) : k] = ε·f(x)·[End(L) : k] and [End(Sx) : k] =
ε·f(x)·[End(L):k]

e(x) . Moreover, deg(Sx) = f(x) · p
p(x) with the least common multiple p

of p1, . . . , pt.

The symbol of X determines the Grothendieck group K0(X) uniquely up to

isomorphism which preserves the Euler form. (The converse also holds if X is

domestic.) We refer to [66, 57].

0.4.6 ([70, S15]). Let M , N ∈ H+ be non-zero and x ∈ X a point. Then for

sufficiently large (positive) n,

(a) Hom(M, σn
x (N)) �= 0.

(b) Hom(σn
x (M), N) = 0.

By Serre duality, one gets similar formulae for the extension spaces.

0.4.7 (The Picard group). Denote by Pic(X) the subgroup of Aut(H) generated

by all tubular shifts σx (x ∈ X) and call it the Picard group. It is always abelian.

By Pic0(X) denote the subgroup of those elements of Pic(X) of degree zero. That

is, σ ∈ Pic(X) is of degree zero if and only if the degree of σ(L) is zero. By 0.4.5,

deg(L(x)) = d(x) · p/p(x) for all x ∈ X, and it follows, that the definition does not

depend on the choice of the structure sheaf L. Every torsion element from Pic(X)

lies in Pic0(X). (The converse is an open question in general.)
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0.4.8. Let x ∈ X be a point and φ ∈ Aut(H). The object φ(Sx) is simple,

concentrated in a point y ∈ X. Then as elements in Aut(H),

σy = φ ◦ σx ◦ φ−1.

In particular, Pic(X) is a normal subgroup of Aut(H).

It is sometimes useful to have a stronger formulation: there is a natural iso-

morphism σy ◦ φ
µ−→ φ ◦ σx, which is compatible with the natural transformations

φ
φx?−→ φσx and φ

yφ(?)−→ σyφ. One shows this by first considering for M ∈ Nx the

φ-image of the Sx-universal extension of M on the one hand and the Sy-universal

extension of φ(M) on the other hand, and then using 0.4.2 (2). In a second step the

natural isomorphism on Nx obtained in this way will be extended to H. (Compare

the proof of 3.1.2 for further details.)

0.5. Tame bimodules and homogeneous exceptional curves

0.5.1 (Bimodule algebra). In these notes we only consider bimodules M =

F MG, where F and G are skew fields of finite dimension over k, with k lying in their

centres, and such that M is finite dimensional over k, with k acting centrally. Such

bimodules, finite dimensional over a central subfield, are also called algebraic [89].

Each bimodule M = F MG gives rise to a finite dimensional k-algebra

Λ =

(
G 0

M F

)
which is hereditary. Moreover, this algebra is of tame representation type (that

is, not of finite and not of wild type) if and only if M is a tame bimodule, that

is, [M : F ] · [M : G] = 4. In this case, the indecomposable regular modules lie in

homogeneous tubes.

More precisely, in the tame case there is the trisection

mod(Λ) = P ∨R ∨Q,

that is, mod(Λ) is the additive closure of P, R and Q, where P is the preprojec-

tive component, consisting of the Auslander-Reiten orbits of two indecomposable

projective modules, dually Q is the preinjective component and

R =
∐
x∈X

Ux

consists of the regular modules, whose indecomposable summands lie in homoge-

neous tubes Ux, and thus R = mod0(Λ) is the separating tubular family.

0.5.2 (Associated hereditary category). In this tame bimodule case the associ-

ated hereditary abelian k-category H is constructed in a simple manner,

H = Q[−1] ∨ P ∨R,

formed inside the bounded derived category Db(mod(Λ)). In other words, H is

obtained from mod(Λ) by shifting the preinjective component to the left and glu-

ing it to the preprojective component, creating thus a category without non-zero

projectives or injectives.

H is a hereditary category on which the Auslander-Reiten translation gives rise

to an autoequivalence and which admits a tilting object with endomorphism ring

Λ. Hence H is nothing else but a homogeneous exceptional curve. Conversely, any

homogeneous exceptional curve is obtained in this way.
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The regular Λ-modules become the objects of finite length in H. The objects

of Q[−1]∨P are the vector bundles. Denote by L a fixed line bundle (which means

that the corresponding preprojective (or preinjective) Λ-module is of rank 1 (−1,

respectively). The line bundle L plays the role of the structure sheaf.

0.5.3 (Homogeneous exceptional curves). A homogeneous exceptional curve H
is characterized by the following properties:

• H is a connected small abelian k-category with finite dimensional mor-

phism and extension spaces.

• H is hereditary and noetherian and contains no non-zero projective object.

• H admits a tilting object.

• For each simple object S ∈ H we have Ext1(S, S) �= 0.

The last condition precisely means that all tubes in H0 are homogeneous.

0.5.4 (Structure sheaf, tilting bundle). In the homogeneous case any line bundle

is special and can play the role of the structure sheaf L. Let L be fixed. Let

L ∈ H+ be indecomposable such that there is an irreducible morphism L −→ L.

Then M = Hom(L, L) is the (up to duality unique) underlying tame bimodule of

X, and rk(L) = ε is the numerical type. Moreover, T = L ⊕ L is a tilting bundle

such that Λ = End(T ) is as in 0.5.1.

0.5.5 (The centre). Let M be a tame bimodule and Λ and H as above. Since

the centre of H (or of Λ) is a field, it is sometimes useful to assume – without loss

of generality – that k is the centre of Λ. But we will not assume this in general.

The centre of M is defined to be the set of all pairs (f, g) ∈ F × G such that

fm = mg for all m ∈ M . In this case, f belongs to the centre of F and g to

the centre of G, and the centre of M is a field K which can be identified with its

projections into F or into G, see [89, 5.2]. Of course, K/k is a finite field extension,

M is a tame bimodule over K, and Λ is a tame hereditary K-algebra with centre

K.

Concerning dual bimodules there is the following general fact.

0.5.6 (Dual bimodule [22, 2.1.1]). Let F MG be an F -G-bimodule over k. There

are isomorphisms of G-F -bimodules

HomF (F MG, F FF ) � Homk(F MG, k) � HomG(F MG, GGG).

0.5.7. The index set X above is naturally equipped with geometric structure,

given by the hereditary category H. It is the aim of the first part to study this

structure. Whereas for algebraically closed field k this structure is well understood

(X is the projective line P1(k)) the structure in general can be very complicated.

Unlike in the algebraically closed case it is in general even impossible to determine

all the points of X explicitly. Also, there are points of many different kinds (of

different degrees, having non-isomorphic endomorphism skew fields of the associated

skyscraper sheaves,...)

One of the still easiest examples is the Kronecker algebra over k = Q. Already

in this innocent looking example the explicit structure of X is quite complicated.

The points of X = P1(Q) (in the scheme-sense) are in one-to-one correspondence

with the irreducible homogeneous polynomials in Q[X, Y ] (up to multiplication with

non-zero scalars). In this ring there are infinitely many irreducible homogeneous

polynomials in any degree. It is hopeless to classify all these irreducible elements.

Any finite field extension of Q occurs as endomorphism ring of a skyscraper sheaf.
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0.6. Rational points

Let X be an exceptional curve. In general it is hopeless to know all points

of X. But often one has some control over the points “lying on the lowest level”,

the rational points. Recall that for an exceptional curve X rational points x, that

means, with f(x) = 1, always exist (see 0.4.4).

Let M = F MG be a (2, 2)-bimodule with associated homogeneous exceptional

curve X and m a non-zero element in M . Then the representation

Sx = (FF , GG, πm : FF ⊗ F MG � MG −→ MG/mG � GG),

involving the canonical projection, induces a simple object in H concentrated in

some point x ∈ X (see [29]). Obviously, x is a rational point, and each rational

point arises in this way.

The following lemma is taken from [53, C.1]. It is a very useful tool for calcu-

lating multiplicities of rational points.

Lemma 0.6.1. Let M = F MG be a (2, 2)-bimodule. Let m be a non-zero element
in M . Let x ∈ X be the induced rational point. For the multiplicity we have

e(x) =
[F : k]

[(Fm ∩ mG) : k]
.

If M is a simple bimodule, or more generally, if m is a bimodule generator of M ,
then e(x) > 1.

Proof. We have Ker(πm) = 1 ⊗ mG. Any endomorphism of Sx is given by

the commutative diagram

F ⊗ M

f ·

πm

G

g·

F ⊗ M
πm

G,

with f ∈ F and g ∈ G, and it follows, that fmG ⊂ mG. Consider the subring

R = {f ∈ F | fmG ⊂ mG} of F . Sending (f ·, g·) to f yields an isomorphism

End(Sx) � R: Injectivity follows by applying πm to an element 1 ⊗ y, with y ∈
M \ mG. Surjectivity follows, since the map f · for f ∈ R restricts to the kernel

of πm, and hence induces a morphism g· on G. Moreover, f �→ fm gives rise to

an isomorphism R � Fm ∩ mG, and with e(x) =
[Hom(L,Sx):k]
[End(Sx):k] =

[End(L):k]
[End(Sx):k] the

stated formula follows. Finally, if m is a bimodule generator, we have R �= F , since

M �= mG.

Alternative proof . We can consider m as monomorphism between L and L
(irreducible map) with cokernel S = Sx. Lifting endomorphisms from End(S) to

End(L) induces an isomorphism between End(S) and the subskewfield of End(L)

of those elements g ∈ End(L) such that there is an f ∈ End(L) such that g ◦ m =

m ◦ f . �

Corollary 0.6.2. Let M = F MG be a (2, 2)-bimodule. Then M is a non-
simple bimodule if and only if there exists a unirational point x.

Proof. If M is simple then no unirational point exists by 0.6.1. If M is non-

simple then F � G, without loss of generality F = G, and then F M = F ⊕ F .
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By [89] there is an automorphism of F over k and an (α, 1)-derivation δ of F such

that (x, y) · f = (xf + yδ(f), yα(f)) for all f , x, y ∈ F . Let m = (1, 0). Then

Fm = mF , hence by 0.6.1 the induced rational point has multiplicity one. �
Lemma 0.6.3. Let M = F MG be a (2, 2)-bimodule. Let m and m′ be non-zero

elements in M inducing points x and x′, respectively. Then x = x′ if and only if
there are non-zero elements f ∈ F and g ∈ G such that m′ = fmg.

Proof. Assume x = x′. Let S = Sx. Consider the exact sequences

0 L
m

L
p

S 0

0 L
m′

L
p′

S 0,

Applying the functor Hom(L,−) to the lower sequence, since Ext1(L, L) = 0 there

is some f ∈ End(L) such that p′◦f = p, and this proves one direction. The converse

is trivial. �





Part 1

The homogeneous case





CHAPTER 1

Graded factoriality

In this chapter we show how to associate with each homogeneous exceptional

curve X a (not necessarily commutative) graded factorial domain; it will be shown

in the next chapter that such a factorial domain is a projective coordinate algebra

for X. We use the term “graded factorial” for a graded version of rings which

are called noncommutative noetherian unique factorization rings by Chatters and

Jordan [13, 47].

Such a coordinate algebra will be constructed as orbit algebra Π(L, σ) where

L is a line bundle and σ a so-called efficient automorphism on H. This means that

σ is point fixing such that the cyclic group 〈σ〉 acts on the set of line bundles “as

transitively as possible”. This condition guarantees that the middle term in each

Sx-universal extension (defined in 0.4.1) of L

0 −→ L
πx−→ L(x) −→ Se(x)

x −→ 0

satisfies L(x) � σd(L) for some natural number d depending on x, and therefore

the kernel πx can be interpreted as a homogeneous element in the orbit algebra

Π(L, σ). Note that this orbit algebra is noncommutative in general.

It is not difficult to see that for each homogeneous exceptional curve an efficient

automorphism exists. The main result of this chapter is the following theorem

(see 1.2.3 and 1.5.1).

Theorem. Let R = Π(L, σ) with σ being efficient. Let Sx be a simple sheaf
concentrated in the point x ∈ X. Let

0 −→ L
πx−→ σd(L) −→ Se

x −→ 0

be the Sx-universal extension of L. Then the following conditions hold
(1) The element πx is normal, that is, Rπx = πxR.
(2) Px = Rπx is a homogeneous prime ideal.
(3) Px is a completely homogeneous prime ideal (that is, R/Px is a graded

domain) if and only if e = 1.
Moreover, for any homogeneous prime ideal P of height one there is a point

x ∈ X such that P = Px.

Because of the last statement and since R is also a noetherian domain, we say

that R is graded factorial, in analogy to commutative algebra.

With the theorem we have established a link between tubular shifts and the

(projective) prime spectrum of R. It turns out that graded factoriality is very useful

for studying the geometry of X.

29
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1.1. Efficient automorphisms

Let X be a homogeneous exceptional curve with associated hereditary category

H.

1.1.1. Recall that Aut0(H) is the subgroup of Aut(H) consisting of those au-

tomorphisms (autoequivalences) φ which are point fixing, that is, which satisfy

φ(Sx) � Sx for all x ∈ X. Note that for example the Auslander-Reiten translation

τ , its inverse τ− and all tubular shifts are in Aut0(H). We will usually assume

(without loss of generality) that a point fixing automorphism σ of X (that is, a

ghost) satisfies σ(A) = A (equality) for all objects A ∈ H0.

1.1.2. We fix a line bundle L (“structure sheaf”). Then L determines the degree

function such that deg(L) = 0 (see 0.3.15). There is an indecomposable L ∈ H+

such that there is an irreducible map L −→ L. Then T = L⊕L is a tilting bundle

on H such that Λ = End(T ) is a tame hereditary bimodule algebra over k and the

End(L)-End(L)-bimodule M = Hom(L, L) serves as underlying tame bimodule.

The rank of L coincides with the numerical type ε of M , hence is one or two. The

Auslander-Reiten quiver (species) of H+ has the following shape:

· · · τL

M∗

L

M∗

τ−L

M∗

τ−2L · · ·

· · · τL

M

L

M

τ−L

M

τ−2L

M

· · ·

where the dotted lines indicate the Auslander-Reiten orbits and M∗ denotes the

dual bimodule of M . A line bundle is (up to isomorphism) uniquely determined by

its degree. The precise value depends on whether L is a line bundle or not. If it is a

line bundle (that is, ε = 1) then we have deg(τ−nL) = 2n and deg(τ−nL) = 2n + 1

for all n ∈ Z. If it is not a line bundle (that is, ε = 2), then deg(τ−nL) = n for all

n ∈ Z.

Definition 1.1.3 (Efficient automorphism). Let σ ∈ Aut(H). We call σ effi-
cient if it is point fixing and such that deg(σL) > 0 is minimal with this property.

Obviously, if σ is efficient and γ is a ghost automorphism, then γ ◦ σ and σ ◦ γ
are efficient.

Lemma 1.1.4. Let X be a homogeneous exceptional curve. Then there exists an
efficient automorphism σ. Moreover, such an automorphism σ is uniquely deter-
mined up to a ghost automorphism.

Proof. For the existence it is sufficient to remark that the inverse Auslander-

Reiten translation τ− is point fixing with deg(τ−L) = 2/ε > 0. Thus there is an

efficient automorphism σ such that 1 ≤ deg(σL) ≤ 2/ε. (Moreover, either σ(L) � L
or σ(L) � τ−(L).) If σ′ is also efficient then σ−1 ◦ σ′ fixes all objects in H and

hence is a ghost automorphism. �

1.1.5 (The orbit cases). Here we present a division of tame bimodules. Each

tame bimodule M belongs to precisely one of the following three classes, called

orbit cases :



1.1. EFFICIENT AUTOMORPHISMS 31

I M is a tame bimodule of type (1, 4) or (4, 1). In this case, the set of all

line bundles coincides with the Auslander-Reiten orbit of L and also with

the Aut0(H)-orbit of L.

II M is a tame bimodule of type (2, 2) and there is precisely one Aut0(H)-

orbit of line bundles, that is, Aut0(H) acts transitively on the set of all

line bundles.

III M is a tame bimodule of type (2, 2), and there are precisely two Aut0(H)-

orbits of line bundles, coinciding with the Auslander-Reiten orbits.

Denote by O the Aut(H)-orbit and by O0 the Aut0(H)-orbit of L, that is, F ∈ H
lies in O0 if and only if there is σ ∈ Aut0(H) such that σ(L) � F . (Similarly for

O.)

Remark 1.1.6. In orbit cases I and III the inverse Auslander-Reiten translation

σ = τ− is an efficient automorphism. In orbit case II there is by definition a

σ ∈ Aut0(H) such that σ(L) � L, which gives an efficient automorphism. Moreover,

by comparing dimensions of homomorphism spaces, σ(L) � τ−L follows. Thus, in

all orbit cases, if σ is efficient, the cyclic group 〈σ〉 acts transitively on O0.

Definition 1.1.7. Let σ ∈ Aut(H). We call σ

• positive, if deg(σL) > 0.

• exhaustive, if the cyclic group 〈σ〉 acts transitively on O0.

• transitive, if 〈σ〉 acts transitively on O.

Lemma 1.1.8. An autoequivalence σ ∈ Aut(H) is efficient if and only if it is
positive, point fixing and exhaustive.

Proof. Follows immediately from Remark 1.1.6 by considering each of the

three orbit cases. �
The following consequence is the main reason for defining efficient automor-

phisms and will be used in the next section.

Corollary 1.1.9. Let σ be efficient and σx be a tubular shift associated to a
point x. Then there is some positive integer d such that σx(L) � σd(L). �

Remark 1.1.10. (1) Assume that the underlying tame bimodule is non-simple

of type (2, 2). Then there is a unirational point x0 ∈ X. Let σ0 be the corresponding

tubular shift. Then 〈σ0〉 acts transitively on the set of isomorphism classes of line

bundles, implying orbit case II.

(2) If k is algebraically closed, or if k = R, or if k is a finite field, then each

tame bimodule is either of orbit case I or non-simple as in (1).

(3) The bimodule M = Q(
√

2)Q(
√

2,
√

3)Q(
√

3) belongs to orbit case III. More

generally each (2, 2)-bimodule F MG with non-isomorphic F and G belongs to this

class since there is no automorphism sending L to L.

(4) If k is algebraically closed then an efficient automorphism σ is uniquely

determined. If k = R the same is true unless M = C⊕ C; in that case we have the

two possibilities σ = σ0 as in (1) and σ = σ0 ◦ γ = γ ◦ σ0, where γ is induced by

complex conjugation. This will be proved in Section 5.3.

(5) In cases I and II a tubular shift σx at a point x is exhaustive (hence efficient)

if and only if x is a unirational point. In case III a tubular shift σx is exhaustive if

and only if either f(x) = 1 and e(x) = 2 or f(x) = 2 and e(x) = 1. Tubular shifts

which are efficient do not always exist, see Example 1.1.13 below.
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(6) There are also simple bimodules in orbit case II, see Example 1.1.13 below.

(7) We will see that in orbit case III for any point the product e(x) · f(x) is

even (see 1.2.1 or 1.6.6).

The division of tame bimodules into the orbit cases will be very useful in the

following. On the other hand, this division is quite formal. In order to get a better

understanding it would be interesting to solve the following problem.

Problem 1.1.11. Find a criterion from which one can easily decide whether a

given (2, 2)-bimodule is of orbit case II or III.

We will later see that efficient automorphisms which are tubular shifts are

advantageous for our considerations (see for example 1.7.1). In general efficient

tubular shifts do not exist, see Example 1.1.13 below.

Problem 1.1.12. Does there always exist an efficient automorphism lying in

the Picard group?

Example 1.1.13. In [29, 5.3] the following type of (2, 2)-bimodules is consid-

ered. Let K be a (commutative) field with subfield F and G, each of index 2 such

that k = F ∩G is of finite index m in F (and G). Then let M be the F -G-bimodule

K.

(1) M is a simple bimodule if and only if F �= G. (Let F �= G. Assume

that N is a proper, non-trivial subbimodule of M . Then for 0 �= n ∈ N we have

Fn = N = nG. Take an element f ∈ F \ G to get a contradiction.)

(2) If m is odd then M is of orbit case II. This follows from 0.6.1 together

with 1.1.10 (7).

(3) If m is odd and F �= G (hence m > 1) then there is no efficient tubular

shift. This follows from 1.1.10 (5) with 0.6.1.

(4) An explicit example for which (3) holds is given as follows: Let k = Q and

M =
Q( 3√2)Q(

3
√

2, ζ)
Q(ζ 3√2) (where ζ is a primitive third root of unity). By 0.6.1

each rational point x has multiplicity e(x) = 3.

1.1.14. If an efficient automorphism σ is fixed, for an object A ∈ H and n ∈ Z
we write A(n) = σn(A). A similar notation for morphisms is used. Note in this

context that one can actually assume that σ is not only an autoequivalence but an

automorphism, that is, an invertible functor (see the discussion in [2]).

We fix a line bundle L. Then each line bundle in O0 is (up to isomorphism) of

the form L(n) for some (unique) n ∈ Z. Let  be the degree of L(1); then  = 1 in

orbit cases I and II, and  = 2 in orbit case III. We call  the orbit number of X or

of M .

1.1.15 (Orbit algebra). Let σ be an efficient automorphism. Let R be the orbit

algebra

Π(L, σ) =
⊕
n≥0

HomH(L, L(n)),

where the multiplication is defined for elements r ∈ Hom(L, L(m)) and s ∈
Hom(L, L(n)) by s ∗ r = σm(s) ◦ r. (We use the symbol ∗ only if we would like

to emphasize that this orbit algebra multiplication is meant.) This yields a pos-

itively Z-graded k-algebra with R0 = End(L) a skew field, and all homogeneous

components Rn are finite dimensional over k. Since non-zero morphisms between
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line bundles are monomorphisms, R is a graded domain, that is, for all non-zero

homogeneous a, b ∈ R we have ab �= 0.

For each n ≥ 0 we have

dimR0 Rn =

{
n + 1 orbit case II

2n + 1 orbit cases I and III.

In one formula: dimR0 Rn = εn + 1. Since each morphism between vector

bundles is a sum of compositions of irreducible morphisms, R is generated in degrees

0 and 1. (This is also true if σ is not exhaustive.)

Note that for example in case M = Q(
√

2)Q(
√

2,
√

3)Q(
√

3) the orbit algebras

Π(L, σ) and Π(L, σ) are not isomorphic as graded algebras.

For a Z-graded algebra, we call the functor ModZ(R) −→ ModZ(R), X �→ X(1),

the degree shift. For R = Π(L, σ) this is induced by the automorphism σ, which

we therefore also call the degree shift (see 2.1.6).

1.2. Prime ideals and universal extensions

We keep the notations from the previous section. In particular, σ is efficient.

1.2.1. Let S be a simple object concentrated in the point x ∈ X. Let e = e(x)

be the multiplicity and f = deg(S) the degree of S (compare 0.4.5). With the orbit

number  from 1.1.14 the quotient d := ef/ is a natural number. It is easy to see

(compare 1.1.9) that then L(x) � L(d) (that is, σx(L) � σd(L)), and therefore the

S-universal extension of L is given by

0 −→ L
π−→ L(d) −→ Se −→ 0

and the kernel π is a homogeneous element in R = Π(L, σ) of degree d.

Lemma 1.2.2. Let σ be a positive and point fixing automorphism. Denote σn(F )

by F (n). Consider the following diagram of exact sequences

0 F2
f2

F1
f1

F0

u0

0

0 G2
g2

G1
g1

G0 0

with F1, F2, G1, G2 ∈ H+ and F0, G0 ∈ H0. Then there is some integer n ≥ 0

and a commutative diagram

0 F2
f2

u2

F1
f1

u1

F0

u0

0

0 G2(n)
g2(n)

G1(n)
g1(n)

G0 0

Proof. For n ≥ 0 apply Hom(F1,−) to the short exact sequence

0 −→ G2(n)
g2(n)−→ G1(n)

g1(n)−→ G0 −→ 0.

Since by 0.4.6 for sufficiently large n we have

Ext1(F1, G2(n)) � DHom(G2(n), τF1) = 0,

the map Hom(F1, G1(n)) −→ Hom(F1, G0) is surjective, and the assertion follows

immediately. �
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Of course, the lemma can be generalized in an obvious way to the weighted

case.

Let P be a (two-sided) homogeneous ideal in R. Then P is called a (homoge-

neous) prime ideal , if for all a, b homogeneous, aRb ⊂ P implies a ∈ P or b ∈ P .

Moreover, P is called a (homogeneous) completely prime ideal , if for all a, b ∈ R
homogeneous, ab ∈ P implies a ∈ P or b ∈ P . A homogeneous element a in R
is called normal if Ra = aR. We additionally assume that normal and central

elements are non-zero. If R is a graded domain then a normal element a defines

a graded algebra automorphism γa on R by ra = aγa(r) for all r ∈ R, and a is

central if and only if γa = 1.

Theorem 1.2.3. Let R = Π(L, σ) with σ being efficient. Let Sx be a simple
sheaf concentrated in the point x ∈ X. Let e = e(x) be the multiplicity, f = deg(Sx)

the degree of Sx, d = ef/ and

0 −→ L
πx−→ L(d) −→ Se

x −→ 0

the Sx-universal extension of L. Then the following holds.
(1) The homogeneous element πx is normal.
(2) Px = Rπx is a homogeneous prime ideal.
(3) Px is a completely homogeneous prime ideal if and only if e = 1.

Proof. We drop the index x and write S = Sx, π = πx and P = Px.

(1) Let r ∈ R be homogeneous of degree n. We have the commutative diagram

with (universal) exact sequences

0 L
π

r

L(d)

s

Se

rx

0

0 L(n)
π(n)

L(n + d) Se 0,

for some s (by universality 0.4.2 (1)). Since σ is an equivalence there is some

homogeneous t ∈ R such that s = t(d). Then, by the definition of the multiplication

in R we get πr = tπ. Hence πR ⊂ Rπ. The reverse inclusion follows since each

homogeneous component is finite dimensional.

(2) Let P ′ be the graded ideal in R, whose homogeneous elements are given by

those r such that rx = 0, where rx is given by the following diagram

0 L
π

r

L(d)

r′

Se

rx

0

0 L(n)
π(n)

L(d + n) Se 0,

(r homogeneous of degree n) where r′ is given as in (1) by universality. Obvi-

ously, π ∈ P ′. Moreover, if r ∈ P ′ is homogeneous of degree n, then there is a

commutative, exact diagram

0 L
π

r

L(d)
p

r′

Se

rx=0

0

0 L(n)
π(n)

L(d + n)
p(n)

Se 0.
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Hence the zero morphism 0 : Se −→ L(d + n) satisfies rx = p(n) ◦ 0. By the

Homotopy-Lemma [45, Lemma B.1] (applied to this special situation) there is an

s ∈ Hom(L(d), L(n)) such that r = sπ. Hence P ′ = Rπ follows.

Note that End(Se) � Me(D) (where D = End(S) is a skew field) is a prime ring

and σ induces an automorphism of this ring. Using the formula (s∗r)x = σm(sx)◦rx

(where m is the degree of r) it is sufficient to show that for some n ≥ 0 the map

Rn −→ End(Se), r �→ rx

is surjective. But this follows from Lemma 1.2.2.

(3) Let e = 1. If a, b ∈ R are homogeneous such that ab ∈ P then (ab)x = 0.

Since End(S) is a skew field, ax = 0 or bx = 0, hence a ∈ P or b ∈ P and P is

completely prime. For the converse, if e > 1, then there are non-zero matrices A,

B ∈ Me(EndS) such that A ·B = 0. By the proof of (2) there are homogeneous a,

b ∈ R such that bx = B and ax = σ−m(A) (where m is the degree of b). It follows

that ab ∈ P , but a �∈ P and b �∈ P . Hence P is not completely prime. �

1.3. Prime ideals as annihilators

In this section we give another description of the homogeneous prime ideals

which occur in Theorem 1.2.3. We assume R = Π(L, σ), where σ is efficient. As

usual, we set F (n) = σn(F ) for all F ∈ H.

1.3.1 (Fibre map). Let S be simple, concentrated in x, let e = e(x). For an

f ∈ Hom(L, L′), where L′ is some line bundle, we have the following commutative

diagram with universal exact sequences

0 L
π

f

L(d)

f ′

Se

fx

0

0 L′ π′
L′(d) Se 0,

with fibre map fx.

1.3.2 (1-irreducible maps). Let f be a (non-zero) morphism between line bun-

dles. Then f is called 1-irreducible, if whenever f = gh with morphisms g and

h between line bundles, then g or h is an isomorphism. The following facts are

obvious:

(1) Each non-zero map between line bundles has a factorization into 1-irreduc-

ible maps.

(2) A morphism between line bundles is 1-irreducible if and only if its cokernel

is a simple object.

(3) Each simple object is cokernel of a 1-irreducible map. Moreover, one of the

line bundles can be chosen arbitrarily.

(4) If u : L −→ L(n) is a 1-irreducible map, then it is an irreducible element in

R. The converse does not hold in general, in orbit case III.

The following lemma is a fundamental statement on 1-irreducible maps.

Lemma 1.3.3. Let S be simple, concentrated in x, let π = πx and e = e(x),
and let

0 −→ L
u−→ L′ −→ S −→ 0
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be exact, where L′ is a line bundle. Then there is a morphism v ∈ Hom(L′, L(d))

such that π = vu. Moreover, the fibre ux : Se −→ Se of u has kernel and cokernel
isomorphic to S.

Proof. Since Hom(S, Se) � Ext1(S, L) by (0.4.1), there is a commutative

exact diagram

0 L
π

L(d) Se 0

0 L
u

L′ S 0,

which proves the first part. For the fibre maps we have 0 = πx = vxux. If ux would

be an epimorphism, then we would have vx = 0. Then, as in the proof of part (2)

of Theorem 1.2.3 we would get a non-zero s ∈ Hom(L′(d), L(d)) = 0, contradiction.

Hence, the cokernel of ux is non-zero, hence isomorphic to S. By the snake lemma,

the same follows for the kernel. �

Proposition 1.3.4. Let S be simple, concentrated in the point x, and P be the
corresponding homogeneous prime ideal (by Theorem 1.2.3). Let M be the graded
left R-module

⊕
n≥0

Ext1H(S, L(n)). Then P = AnnR(M).

Proof. Let r ∈ Rn, r �= 0. The S-universal extension induces a commutative

exact diagram

0 L
π

r

L(d) Se 0

0 L(n) X Se 0.

If r ∈ AnnR(M) then the lower sequence splits and r ∈ P follows immediately. For

the converse, we show more generally the next proposition. �

Proposition 1.3.5. Let S be a simple sheaf concentrated in x and P = Rπ
be the corresponding homogeneous prime ideal. For each n ∈ N let S(n) be the
indecomposable sheaf of length n with socle S. Let M (n) be the graded left R-module⊕

i≥0 Ext1(S(n), L(i)). Then AnnR(M (n)) ⊃ Rπn = Pn.

Proof. There is a short exact sequence

0 −→ S
i−→ S(n) p−→ S(n−1) −→ 0,

which induces a short exact sequence of graded modules

0 −→ M (n−1) p∗
−→ M (n) i∗−→ M −→ 0.



1.3. PRIME IDEALS AS ANNIHILATORS 37

We have to show that πM (n) ⊂ p∗(M (n−1)) (� M (n−1)). A homogeneous, non-zero

element η in M (n) induces the following pushout diagram

0 0

η : 0 L
a

π

X S(n) 0

πη : 0 L(d)
a′

X ′ S(n) 0

Se Se

0 0

If X decomposes, X = L′ ⊕ E with E �= 0 of finite length and L′ a line bundle,

then E � S(i) for some 1 ≤ i ≤ n (since S(n) is uniserial), and we get the following

commutative exact diagram

E
∼

S(i)

η : 0 L L′ ⊕ E S(n) 0

0 L L′ S(n−i) 0

Then η ∈ p∗(M (n−1)) follows. Similarly, if X ′ decomposes, then πη ∈ p∗(M (n−1))

follows. But if X and X ′ are indecomposable, hence line bundles, then the middle

vertical short exact sequence is (up to shift) the S-universal sequence (for L or for

L). It then follows that ax is an isomorphism. Since a is a product of n morphisms

between line bundles with cokernel S, we get a contradiction by Lemma 1.3.3. �

Corollary 1.3.6. For each x ∈ X denote by Px the homogeneous prime ideal
as in Theorem 1.2.3. For each infinite subset U of X,⋂

x∈U

Px = 0.

Proof. Denote by Sx the simple sheaf concentrated in x. Let r ∈ R be non-

zero and homogeneous of degree n. Choose x ∈ U such that the cokernel in the

short exact sequence

0 −→ L
r−→ L(n) −→ C −→ 0,

has no non-zero summand which is concentrated in x. Denote by Mx the graded R-

module ⊕n≥0 Ext1(Sx, L(n)). Then r �∈ AnnR(Mx) = Px follows by the Homotopy-

Lemma. �
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1.4. Noetherianness

Let R = Π(L, σ), where σ is positive. We show that R is noetherian. Since

this basic property is very important we give a detailed proof. The arguments are

mainly taken from [7].

1.4.1. Let L be the full subcategory of H formed by all L(n) (where n ∈ Z).

Denote by L+ the full subcategory formed by all L(n) (where n ≥ 0). Similarly,

denote by L− the full subcategory formed by all L(n) (where n ≤ 0). We denote by

ModL the category of (covariant) k-functors F : L −→ Mod(k) (similarly for L+

and L−), and by ModZ(R) the category of Z-graded right R-modules, by ModZ+(R)

those graded modules M with Mn = 0 for n < 0. The following obvious lemmas

are proved as in [7, 3.6].

Lemma 1.4.2 (covariant functors = left graded modules). There is an equiva-
lence of k-categories

Mod(L+) −→ ModZ+(Rop), F �→
⊕
n≥0

F (L(n)).

For X ∈ H denote by (X,−] the functor HomH(X,−)|L+ , by Ext1H(X,−] the

functor Ext1H(X,−)|L+ .

Lemma 1.4.3 (contravariant functors = right graded modules). There is an
equivalence of k-categories

Mod(Lop
− ) −→ ModZ+(R), F �→

⊕
n≥0

F (L(−n)).

For X ∈ H denote by [−, X) the (contravariant) functor HomH(−, X)|L− , by

Ext1H[−, X) the functor Ext1H(−, X)|L− .

Proposition 1.4.4. R = Π(L, σ) is (graded) noetherian (left and right).

Proof. (1) (compare [7, 4.2]) We have to show that the functor (L,−] is

noetherian. For this it is sufficient to show, that (L,−]/U is noetherian for each

non-zero cyclic subfunctor U . Let n ∈ Z such that there is an epimorphism

(L(n),−] −→ U.

Then there is a non-zero morphism

η : (L(n),−] −→ (L,−]

induced by some morphism f : L −→ L(n). We get a short exact sequence

0 −→ L
f−→ L(n) −→ C −→ 0,

where C ∈ H0, which induces an exact sequence

0 −→ (C,−] −→ (L(n),−] −→ (L,−] −→ Ext1H(C,−].

Hence it suffices to show that the functor Ext1H(S,−] is noetherian for each simple

object S ∈ H0. But this follows precisely as in [7, 4.1]: we have to show that

Ext1(S,−]/U is noetherian for each non-zero cyclic (or finitely generated) subfunc-

tor U . Let (L(m),−] −→ Ext1(S,−] be a non-zero morphism with image U . This

is induced by some non-split short exact sequence

0 −→ L(m) −→ L′ −→ S −→ 0,
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with some line bundle L′. We get an exact sequence

0 −→ (L′,−] −→ (L(m),−] −→ Ext1(S,−] −→ Ext1(L′,−].

By Serre duality and by the positivity of the grading of R we see, that the functor

Ext1(L′,−] is of finite length, therefore the same holds true for Ext1(S,−]/U .

(2) Similarly, we have to show that the contravariant functor [−, L) is noether-

ian. As above, it suffices to show that [−, L)/V is noetherian for each non-zero cyclic

(contravariant) subfunctor V . Let n ∈ Z be such that there is an epimorphism

[−, L(−n)) −→ V.

Then there is a non-zero morphism

[−, L(−n)) −→ [−, L)

induced by some morphism g : L(−n) −→ L. We get a short exact sequence

0 −→ L(−n)
g−→ L −→ B −→ 0,

with B ∈ H0, hence an exact sequence

0 −→ [−, L(−n)) −→ [−, L) −→ [−, B).

It suffices to show that [−, S) is noetherian for each simple sheaf. Again we show

that [−, S)/V is noetherian for each non-zero cyclic (contravariant) subfunctor V .

We get a morphism

[−, L(m)) −→ [−, S)

with image V . This induces a short exact sequence

0 −→ L′ −→ L(m) −→ S −→ 0,

with some line bundle L′, hence an exact sequence

0 −→ [−, L′) −→ [−, L(m)) −→ [−, S) −→ Ext1[−, L′).

By Serre duality Ext1[−, L′) is of finite length, hence we get the result. �

Proposition 1.4.5. R = Π(L, σ) has graded (classical) Krull dimension two.
That is, since R is a graded local domain, the only homogeneous prime ideals are
the zero ideal, the homogeneous maximal (left) ideal m =

⊕
n≥1 Rn and the homo-

geneous prime ideals of height one.

Proof. Let F = mod(L+), and denote by F0 the full subcategory of F of

objects of finite length. Denote by F1 the Serre subcategory of objects in F which

become of finite length in F/F0. One shows as in [7, 4.6] that for each n ∈ Z the

functor (L(n),−] becomes simple in F/F1. It follows (compare [77, 6.4.5]), that the

classical Krull dimension of R is two. �

1.5. Prime ideals of height one are principal

Let X be a homogeneous exceptional curve. For x ∈ X denote by Px the

homogeneous prime ideal of height 1 as in Theorem 1.2.3.

Theorem 1.5.1. Let R = Π(L, σ) with σ being efficient. Let P be a homoge-
neous prime ideal in R of height one. Then P = Px for some x ∈ X.
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Proof. Let a ∈ P be a non-zero homogeneous element. Let U be the sub-

functor of (L,−] corresponding to the graded module Ra. There is an epimorphism

(L(m),−] −→ U . This induces a short exact sequence

(1.5.1) 0 −→ L
a−→ L(m) −→ C −→ 0,

where C is a coproduct
∐t

i=1 S
(ni)
i , with (not necessarily non-isomorphic) simple

S1, . . . , St in H0, concentrated in x1, . . . , xt, respectively. Let M
(ni)
i be the graded

left R-module
⊕

n≥0 Ext1(S
(ni)
i , L(n)) and Pi = Rπi be the homogeneous prime

ideal corresponding to xi. We have Pni
i ⊂ AnnR(M

(ni)
i ). By applying (−,−] to

the short exact sequence (1.5.1) we get an exact sequence

0 −→ (L(m),−] −→ (L,−] −→ Ext1(C,−].

Thus R/Ra embeds into
⊕t

i=1 M
(ni)
i . Hence we get (using 1.3.5)

P = AnnR(R/P ) ⊃ AnnR(R/Ra) ⊃ AnnR

( t⊕
i=1

M
(ni)
i

)
⊃

t⋂
i=1

Rπni
i .

It follows that the product of some powers of the normal elements π1, . . . , πt is in

P , hence πi ∈ P for some i. But then P = Pi follows. �

Combining Theorem 1.2.3 and Theorem 1.5.1 we get the following important

result.

Corollary 1.5.2. There is a natural bijection x �→ Rπx between points x ∈ X
and homogeneous prime ideals P ⊂ R of height one, given by forming universal ex-
tensions. Under this bijection points of multiplicity one correspond to homogeneous
completely prime ideals of height one. �

Invoking Krull’s principal ideal theorem, a commutative noetherian integral

domain is factorial (that is, a unique factorization domain) if and only if each

prime ideal of height one is principal ([76, 20.1]). Inspired by this we make the

following definition (where we allow abelian grading groups):

Definition 1.5.3. Let R be a noetherian graded domain. Then R is called

a (noncommutative) graded factorial domain if each homogeneous prime ideal of

height one is principal, generated by a normal element.

In our setting a graded factorial domain is nothing but the graded version

of a noncommutative noetherian unique factorisation ring (UFR) in the sense of

Chatters and Jordan [13, 47], where we here restrict our considerations to domains.

Note that on the other hand (besides the grading) the concept of a noncom-

mutative unique factorization domain (UFD) in [12], where only completely prime

ideals of height one are considered, is too restrictive for our purposes. (Actually

we will show that the rings occurring in our setting are (graded) UFD’s in the

sense of Chatters [12] only when they are commutative, see Theorem 1.2.3 (3) and

Theorem 4.3.5.) In his definition of unique factorization domains Cohn [14, 16]

focussed on irreducible elements (atoms) rather than on prime elements/ideals.

Corollary 1.5.2 has the following important consequence.

Corollary 1.5.4. The orbit algebra Π(L, σ), where σ is efficient, is a (non-
commutative) graded factorial domain. �
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Corollary 1.5.5. In orbit cases I and III, the small preprojective algebra
Π(L, τ−) is graded factorial.

Proof. In these cases the inverse Auslander-Reiten translation τ− is efficient.

�
Problem 1.5.6. It is an interesting question whether it is true that the com-

pletion R̂ of the graded factorial R = Π(L, σ) is factorial again. This would provide

a class of examples of (noncommutative) complete factorial rings. So far only very

few examples are known (see [107]).

1.6. Unique factorization

Let X be homogeneous. Let R = Π(L, σ) be an orbit algebra where σ is an

efficient automorphism.

1.6.1 (Prime and irreducible elements). Recall that a non-zero, homogeneous

element a ∈ R is called normal if Ra = aR holds. We call a (non-zero) homogeneous

element π in R prime if it is normal and if it generates a homogeneous prime ideal

(necessarily of height one). A non-zero homogeneous element u is called irreducible
if u = ab with a, b homogeneous, implies that either a or b is a unit.

We have a weak form of Euclid’s Lemma: If π is prime and divides the product
ab, where a and b are homogeneous, such that a or b is normal, then π divides a or
b.

Lemma 1.6.2. Let π1, π2 be two prime elements. Then there is an α ∈ R∗
0 such

that π1π2 = απ2π1.

Proof. This follows from the properties of universal extensions, but there is

also a purely ring theoretical proof. The assertion is clear if Rπ1 = Rπ2. Assume

that Rπ1 �= Rπ2. Since π1, π2 are normal, we have π1π2 = γ(π2)π1, where γ is

a degree preserving automorphism on R. Then γ(π2) is also prime and π2 divides

γ(π2)π1, hence π2 divides γ(π2), thus there is an α ∈ R∗
0 such that γ(π2) = απ2. �

Proposition 1.6.3. Let R = Π(L, σ) with σ being efficient. Each non-zero
normal element of R is a product of prime elements. This factorization is unique
up to permutation and multiplication with units.

Proof. Let a �= 0 be a normal non-unit. By the principal ideal theorem

(see [77, 4.1.11]) there is a prime ideal P1 of height one such that a ∈ P1. There is

a prime element π1 such that P1 = Rπ1. Hence there is a homogeneous element r1

such that a = r1π1. Since r1 is normal (see below), the assertion follows because of

the positivity of the grading by induction. The uniqueness (up to a unit) follows

from the preceding lemma.

We show that r1 is normal. For each normal element f let γf : R −→ R be the

automorphism such that sf = fγf (s) for each s ∈ R. Let s ∈ R, r := r1, π := π1.

Then

(sr)π = s(rπ) = sa = aγa(s) = rπγa(s) = rγ−1
π γa(s)π,

hence sr = rγ−1
π γa(s), hence Rr ⊂ rR. The converse inclusion follows by rs =

γ−1
a γπ(s)r for each s ∈ R. �

Corollary 1.6.4 (Almost commutativity of normal elements). Let f1, f2 be
two normal elements. Then there is a homogeneous unit α ∈ R∗

0 such that f1f2 =

αf2f1. �
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One can summarize the preceding results by saying that the non-zero normal

elements modulo units form a UF-monoid in the sense of [16, Ch. 3], see also [47].

Moreover, as in [47, Prop. 2.2] it follows that each non-zero homogeneous ideal

contains a normal element. (R is said to be (graded) conformal.)

Obviously, each homogeneous element r ∈ R, r �= 0, is a product of irreducible

elements. If a normal element is irreducible it is prime.

1.6.5 (Ringtheoretic meaning of e(x) and f(x)). Let u be a homogeneous el-

ement of R with cokernel S. Obviously, if S is simple, then u is irreducible. The

converse also holds in orbit cases I and II, that is, here irreducible elements and 1-

irreducible maps are the same concept. Hence, with the notations of Theorem 1.2.3,

in orbit cases I and II the prime element π = πx is a product of e = e(x) irreducible

elements: π = u1u2 . . . ue. Moreover, each ui is of degree f = f(x) = deg(S). �

In orbit case III we get a slightly different result, since then there are irreducible

elements (even of degree one in R) with cokernel of length two; they may have two

different points as support.

Proposition 1.6.6. With the same notations as in Theorem 1.2.3, assume
orbit case III. Then the following holds for π = πx.

(1) If f = deg(S) is even, then π = u1u2 . . . ue, where all ui ∈ R are irreducible
of degree f/2 with cokernels isomorphic to S.

(2) If f = deg(S) is odd, then e is even and π = u1u2 . . . ut, where t = e/2 and
all ui ∈ R are irreducible of degree f with cokernels isomorphic to S2.

Proof. A chain of projections Se � Se−1 � . . . � S yields a factorization

π = v1v2 . . . ve with vi : L(e−i) −→ L(e−i+1), where L(i) are line bundles such that

L(0) = L and L(e) = L(d). Moreover, the cokernels of the vi are isomorphic to S,

hence deg L(i+1) = deg L(i) + f . If f is even, all L(i) lie in the same orbit, whereas

in case f is odd, precisely the L(i), where i is even, lie in the same orbit as L. So, in

the first case, all ui := vi are in R and irreducible. In the second case, the elements

ui = v2i−1v2i are in R and irreducible. �

Note that in orbit case III there are also irreducible elements in R with inde-

composable cokernel S
(2)
x of length two.

The following is a modification of Lemma 1.3.3 so that there is some left and

right symmetry:

Lemma 1.6.7. Let S be simple, concentrated in x, and let u ∈ R be irreducible
such that

0 −→ L
u−→ L(f) −→ S −→ 0

is exact. Then there is a morphism v′ ∈ Rd−f such that πx = uv′.

Proof. Let π = πx = ab be a product of homogeneous elements. Then the

cokernel of a (or b, resp.) is of the form Sf for some 0 ≤ f ≤ d. Then, by

universality, there is a b′ such that π = b′a, and since b′π = πb, we get b′ = γ(b),
where γ : R −→ R is the automorphism such that πr = γ(r)π for each r ∈ R. Now

apply Lemma 1.3.3 to γ−1(u). �

Remark 1.6.8. There is also a version for irreducibles with cokernel S2.

The same argument shows:
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Lemma 1.6.9. Let π = u1 . . . ut be a factorization of the prime element π into
irreducibles u1, . . . , ut. Let γ : R −→ R be the automorphism such that πr = γ(r)π
for all r ∈ R. Then

π = γ(ut)u1 . . . ut−1 = utγ
−1(u1) . . . γ−1(ut−1)

= γ(ut−1)γ(ut)u1 . . . ut−2 = ut−1utγ
−1(u1) . . . γ−1(ut−2)

...
...

= γ(u2) . . . γ(ut)u1 = u2 . . . utγ
−1(u1).

Accordingly, for all i and j there is an irreducible decomposition of π where ui

appears at position j. �

We remark that the behaviour of irreducible elements is not well-understood.

For example, it is not true in general, that a prime element remains the same

under each permutation of its irreducible factors. It may happen, that under some

permutation of the factors the cokernel is not semisimple. Moreover, in orbit case III

it is even unknown whether each irreducible element is divisor of a normal element.

Example 1.6.10. Let β = e2πi/3 the third root of unity, let k = Q(β) and

K = k(t) with t =
3
√

2. Let R = K[X; Y, α], where α is the k-automorphism on K
given by t �→ βt. (We will see in the next section that R can be realized as orbit

algebra Π(L, σ) over a suitable exceptional curve with efficient automorphism σ.)

Then

π = Y 3 − 2X3 = (Y − tX)(Y − βtX)(Y − β2tX)

is a factorization of the central prime element π into irreducibles. Then

(Y − βtX)(Y − tX)(Y − β2tX) = Y 3 − 3βtXY 2 + 3βt2X2Y − 2X3,

and the cokernel of this element is not semisimple, since it is not associated to π.

1.7. Examples of graded factorial domains

In this section we discuss some classes of examples of orbit algebras Π(L, σ)

with efficient σ. It follows in particular that these explicitly given algebras are

graded factorial domains.

One main reason for preferring efficient automorphism which are tubular shifts

(if they exist) when forming the orbit algebra is the following simple fact (which is

some converse of Theorem 3.1.2 below). It ensures the existence of central prime

elements of degree one which is very useful for calculating examples (see also the

proof of Theorem 4.3.5).

Lemma 1.7.1. Let R = Π(L, σx) be the orbit algebra defined by an efficient
tubular shift σx at x. Then the prime element πx associated with x is central in R.

Proof. Write σ = σx and π = πx. Since for all homogeneous elements r ∈ R
of degree n ≥ 0 we have the commutative universal diagram

0 L
π

r

σL

σr

S
e(x)
x

rx

0

0 σnL
σnπ

σn+1L S
e(x)
x

0,

the element π is central. �
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The non-simple bimodule case.

1.7.2. Let X be a homogeneous exceptional curve and M = F MG be the

underlying tame bimodule which we assume to be of type (2, 2) and to be non-

simple. We identify F = G. Let πx, πy be an F -basis of M as left module, where

πx corresponds to a unirational point x (which exists by 0.6.2). That is, πx is

defined as the kernel of the universal extension

0 −→ L
πx−→ σxL −→ Sx −→ 0

where we identified M with Hom(L, σxL).

Let σ = σx be the tubular shift associated to the unirational point x, and let

R = Π(L, σ) be the corresponding orbit algebra. Then πx and πy are elements

in R1 = M , and (at least) πx is a prime element in R. (Note that πy can be

non-prime.) By Lemma 1.7.1 the element πx is central.

By [89] there are α, δ : F −→ F such that for all f ∈ F the formula

πyf = δ(f)πx + α(f)πy

holds, where α is a k-automorphism of F and δ is an (α, 1)-derivation on F .

Since dimR0 Rn = n + 1, it is easy to see that the n + 1 elements πn
x , πn−1

x πy,

πn−2
x π2

y, . . . , πxπn−1
y , πn

y form a R0-basis of Rn for each natural number n.

Denote by F [X; Y, α, δ] the skew polynomial ring in two variables, where every

element is expressible uniquely in the form
∑

i, j fijX
iY j with fij ∈ F (that is, as

left polynomial) and such that X is central and for all f ∈ F we have

Y f = δ(f)X + α(f)Y.

Since α is bijective each element can also be expressed uniquely as right polynomial.

Moreover, this ring is graded by total degree (that is, deg(X) = 1 = deg(Y )). Then

we get

Proposition 1.7.3. As graded algebras Π(L, σx) � F [X; Y, α, δ]. �
Therefore this case is also referred to as the skew polynomial case.

Remark 1.7.4. (1) See [89, 22] for an affine version of this. Therefore the

preceding result is not surprising. One should expect that for simple bimodules

(of any numerical type) one gets in a similar way graded analogues of the rings

considered in [29, 23] and [18, 5.3].

(2) The function fields in the non-simple bimodule cases are well known, see

[90]. From the preceding proposition it follows again that k(X) � F (T, α, δ), the

quotient division ring of the skew polynomial ring F [T, α, δ]. (The variable T is

obtained as T = Y X−1.)

(3) The factoriality of the skew polynomial algebras in 1.7.3 also follows from

results by Chatters and Jordan [13].

Lemma 1.7.5. Let R = F [X; Y, α, δ] where X is central and X and Y having
degree one. The homogeneous prime ideals of height one different from RX are in
one-to-one correspondence with the non-zero prime ideals in F [Z, α, δ].

Proof. Let RX be the localization with respect to the central multiplicative

set given by the powers Xn (n ≥ 0). (See also Section 2.2.) By [36, 9.22] the

homogeneous prime ideals disjoint from this set correspond to the homogeneous

prime ideals in RX . Restriction to the zero component gives the skew polynomial
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ring F [Z, α, δ] in one variable, where Z = Y X−1. The prime ideals in this ring are

in one-to-one correspondence with the homogeneous prime ideals in RX since there

is a central unit of degree one in RX . �

Lemma 1.7.6. In Proposition 1.7.3 one can assume either α = 1F or δ = 0. If
char k = 0 then one can assume δ = 0.

Proof. The first assertion follows by adopting [44, 1.1.21] to the case of two

variables. If char k = 0 and Π(L, σx) � F [X; Y, 1F , δ], then one can adopt [36,

9.23] to show that δ is an inner derivation, and hence as graded algebras Π(L, σx) �
F [X; Y, 1F , 0]. (If δ is not inner, then by [36, 9.23] the ring F [Z, 1F , δ] is a simple

ring. Then by 1.7.5, X consists of precisely one point. But since k is infinite there

are infinitely many points by [89, Thm. 3]. We give an alternative argument: The

zero component of the localization RX is finitely generated over its centre ([18,

5.2]); on the other hand it coincides with F [Z, 1F , δ], and in case δ is not inner

this is not finitely generated over its centre by Amitsur’s theorem (compare [44,

1.1.32]).) �

If δ = 0 then the non-simple bimodule case is also called the twisted polynomial

case, if α = 1 it is also called the differential polynomial case.

From now on we assume δ = 0, so that R = F [X; Y, α] is a graded twisted

polynomial algebra. Then also πy is normal and hence prime. Let σy be the

corresponding tubular shift. Modulo inner automorphisms α has finite order r.
There is some u ∈ F ∗ such that αr(f) = u−1fu for all f ∈ F . We have M = F ⊕F
with f · (x, y) = (fx, fy) and (x, y) · f = (xf, yα(f)) for all f , x, y ∈ F . We write

also M = M(F, α).

Denote by Fix(α) the subfield of all f ∈ F such that α(f) = f . With u as

above, one can assume that u ∈ Fix(α)∗. Let K = Z ∩ Fix(α).

Lemma 1.7.7. The centre of R = F [X; Y, α] is given by K[X, uY r]. The ho-
mogeneous prime elements in R are (up to multiplication with a unit) X, Y and
the homogeneous prime elements in K[X, uY r], which are polynomials in Xr and
uY r with coefficients lying in K.

Proof. This follows by reducing to [44, 1.1.22] as in the proof of 1.7.5. �

(Note that the centre can be also determined in the graded differential polyno-

mial case R = F [X; Y, 1F , δ], compare [44, 1.1.32].)

It follows in particular that (up to multiplication with a unit) every homoge-

neous prime element in R except Y is central. (Y itself is central (up to a unit) only

in case r = 1.) Note that for example the central elements of the form aXr + buY r

with a, b ∈ K∗ are prime in R.

There is a version for the function field:

1.7.8. The centre of the function field F (T, α) is given by K(uT r), with the

notations as above. The dimension of F (T, α) over its centre is given by r2m2 with

m2 = [F : Z(F )]. (We call the number s(X) = rm the (global) skewness.)

Lemma 1.7.9. Let z be a point different from the points x and y which corre-
spond to the prime elements X and Y , respectively. Then d(z) = e(z) · f(z) is a
multiple of r.
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Proof. The corresponding prime element πz is a product of e = e(z) many

irreducible elements, each of degree f = f(z). Now πz is a homogeneous polynomial

in the variables Xr and uY r of degree d = ef . �
For an element f ∈ F and each integer i ≥ 0 let Ni(f) = αi−1(f) · · ·α(f)f .

We call N(f) = Nr(f) the norm of f .

Lemma 1.7.10. With the notations as above, assume that there is an element
b ∈ F such that u−1 = N(b). Then the element u−1(Xr − uY r) is a product of r
irreducible elements in R. Accordingly, the multiplicity of the corresponding rational
point z is given by e(z) = r, and the endomorphism ring of the corresponding simple
object Sz is given by the skew field of those elements f ∈ F such that α(f) = b−1fb.

Proof. Follows from [44, 1.3.12] and 1.6.5. �
Explicit examples over the real numbers with complete lists of prime elements

are given in 5.6.1.

1.7.11 (Arbitrarily large multiplicities). If F is commutative then one can as-

sume that u = 1. If furthermore F/k is a cyclic Galois extension of degree r with

Galois group generated by α then the preceding lemma can be applied. In this

way it is possible to construct examples of exceptional curves having points (even

rational ones) with arbitrarily large multiplicities.

The dimension of k(X) over its centre is always a perfect square. This dimension

can also be arbitrarily large which follows from the same example. In the present

case k(X) = F (T, α) has dimension r2 over its centre k(T r).

It will follow from 2.2.13 that in this case r is the maximal multiplicity.

The quaternion case. Let k be a field of characteristic different from two.

Let a, b ∈ k∗ and let F =
(

a, b
k

)
be an algebra of quaternions over k, that is, a

k-algebra on generators i and j subject to the relations

ji = −ij, i2 = a, j2 = b.

We assume that F is a skew field. Equivalently, the norm form of pure quaternions

−aX2 − bY 2 + abZ2 is anisotropic over k. Let M be the bimodule kFF .

We have shown in [54] that the small preprojective algebra is given by

Π(L, τ−) � k[X, Y, Z]/(−aX2 − bY 2 + abZ2).

We will see later that τ− is the only efficient automorphism in this case. Note that

the factoriality of this algebra was already known from a theorem of P. Samuel [99],

we refer to [33, Prop. 11.5].

It is interesting that the bimodule kFF given by noncommutative data gives

a commutative orbit algebra. The next example shows the converse behaviour. A

reason for this will be explained in Section 4.3.

The square roots case. The following example is based on calculations by

D. Baer [6, 1.3.6]. In order to get the following result we need an additional

argument.

Proposition 1.7.12. Let a, c ∈ k and K the field k(
√

a,
√

c) such that [K :

k] = 4. Let M be the k-K-bimodule K and let X be the associated homogeneous
exceptional curve. Then there is a unirational point x ∈ X such that

Π(L, σx) � k〈X, Y, Z〉/(XY − Y X, XZ − ZX, Y Z + ZY, Z2 + aY 2 − cX2),
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where each variable is of degree one. In particular, the algebra on the right hand
side is graded factorial.

Proof. In [6, 1.3.6] the category of preprojective modules of rank one over

the associated bimodule algebra, which is equivalent to the category L+ as defined

in 1.4.1, is determined explicitly. It is easy to see that the morphism Y between

two successive preprojectives of rank one described in [6] defines a universal ex-

tension with simple cokernel given as representation Sx : k2 ⊗ K
(1,

√
a)−→ K (with

endomorphism ring k(
√

a)), and that the degree shift given in [6] coincides on the

category L+ with the tubular shift σx. Now the assertion follows from the relations

determined in [6] (where we changed the roles of the variables X and Y ). �
For further properties of this example see 4.3.7, 3.2.16 (2) and 5.7.2. Explicit

examples are given by k = Q and K = Q(
√

2,
√

3) or K = Q(
√

2,
√
−3) (the latter

case occurring in 8.3.2).





CHAPTER 2

Global and local structure of the sheaf category

As a consequence of a version of Serre’s theorem by M. Artin and J. J. Zhang

the graded factorial orbit algebras considered in the previous chapter are projective

coordinate algebras for the homogeneous exceptional curves. It follows from the

graded factoriality that homogeneous prime ideals of height one are localizable.

We also consider the localization with respect to the multiplicative set given by the

powers of a prime element. We describe properties of these localizations and derive

important relations between the multiplicity function x �→ e(x) and the dimension

of the function field k(X) over its centre.

2.1. Serre’s theorem

Let X be a homogeneous exceptional curve with hereditary category H. Let E
be a non-zero object in H+, and let ϕ be some automorphism of H. Recall that ϕ
is positive if deg(ϕL) > 0. In [2] (see also [105]) the pair (E, ϕ) is called ample if

the following holds:

(1) For each object X ∈ H there is an epimorphism
⊕n

i=1 ϕ−αi(E) � X with

integers αi > 0.

(2) Each epimorphism X � Y induces an epimorphism

Hom(E, ϕnX) � Hom(E, ϕnY )

for n � 0.

Lemma 2.1.1. If ϕ is positive then the pair (E, ϕ) is ample.

Proof. From the special structure of H, the first property for ampleness is

true for E = L and E = L and then follows easily for arbitrary E. The second

property for ampleness follows from 0.4.6 with Serre duality. �

The following theorem is a special case of Serre’s theorem for non-commutative

projective schemes by M. Artin and J. J. Zhang [2].

Proposition 2.1.2 (Serre’s theorem). Let X be a homogeneous exceptional
curve. Let E be a non-zero vector bundle and ϕ be a positive automorphism of H.
Let R = Π(E, ϕ) =

⊕
n≥0 HomH(E, ϕnE) be the orbit algebra defined to the pair

(E, ϕ). Then the section functors

Γ : H −→ ModZ(R), F �→
⊕
n∈Z

Hom(E, ϕn(F ))

and
Γ+ : H −→ mod

Z+(R), F �→
⊕
n≥0

Hom(E, ϕn(F ))

49
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induce equivalences

H � mod
Z
(R)

modZ
0 (R)

� mod
Z+(R)

mod
Z+
0 (R)

. �

Corollary 2.1.3. Each homogeneous exceptional curve admits a (noncommu-
tative) graded factorial domain as projective coordinate algebra. �

Corollary 2.1.4. Let X be an exceptional curve. Then the function field k(X)

is the quotient division ring of degree zero fractions of a graded factorial domain.

Proof. Note that the function field of an exceptional curve coincides with

the function field of the underlying homogeneous curve. If X is homogeneous and

R = Π(L, σ) (with σ efficient) then by [7] (compare also [88, IV.4.1, Step 4]) k(X)

coincides with the degree zero part of the graded quotient division ring QuotZ(R)

of R. �

2.1.5 (The sheafification functor). Let R = Π(E, ϕ) be with ϕ positive. (Of

course, we have in mind E = L and ϕ = σ being efficient.) Denote by T :

mod
Z
(R) −→ modZ(R)

modZ

0(R)
� modZ+ (R)

mod
Z+
0 (R)

the canonical quotient functor. By the proposi-

tion TΓ+ is an equivalence. Denote by φ :
modZ(R)

modZ

0(R)
−→ H some quasi-inverse and

define ·̃ : modZ(R) −→ H (and also its restriction to modZ+(R)) by ·̃ = φT . We

may assume that R̃(n) = ϕnE (usually = L(n)) for all n ∈ Z. This gives an exact

and dense functor with kernel modZ
0 (R) and such that ·̃ ◦ Γ+ � 1.

Denote also by T the quotient functor T : ModZ(R) −→ ModZ(R)

ModZ

0(R)
. Then T

admits a right adjoint S (the section functor) which is fully faithful and TS = 1

holds (compare [85, 4.4]). Denote by S+ :
modZ+ (R)

mod
Z+
0 (R)

−→ modZ+(R) the functor

given by S+T (M) = ST (M)≥0 (the non-negative part of ST (M)) for each M ∈
modZ+(R). This is well-defined, since by [2, 4.5 S5-S7] T (M) � TΓ(F ) for some

F ∈ H, and ST (M)≥0 � STΓ(F )≥0 � Γ(F )≥0 = Γ+(F ) is finitely generated. Since

for all M and N in mod
Z+(R) obviously Hom(M, ST (N)≥0) = Hom(M, ST (N)),

it follows directly by the adjointness of T and S that also (T, S+) is an adjoint

pair, that is, mod
Z+
0 (R) is a localizing subcategory of mod

Z+(R). By the preceding

argument, S+TΓ+ � Γ+, and thus Γ+ is fully faithful. Since there is a natural

transformation 1 −→ S+T � Γ+ ◦ ·̃ , it follows easily that Γ+ is right adjoint to

·̃ . �

2.1.6 (Degree shift). We keep the notation from the preceding number. Denote

by D the degree shift X �→ X(1) on ModZ(R). Then DΓ = Γϕ.

Denote by D+ the functor on mod
Z+(R) given by D+(M) = D(M)≥0. Then

similarly D+Γ+ = Γ+ϕ. It follows that via the equivalences TΓ+ and φ the au-

tomorphism ϕ (defining the grading of R) corresponds to the automorphism on
modZ+ (R)

mod
Z+
0 (R)

which is induced by D+.

2.1.7 (Section modules/Cohen-Macaulay modules). For simplicity, we return

to our standard situation, that is, R = Π(L, σ) with σ being efficient. Then R0 =

End(L) is a skew field and is up to shift the only simple graded R-module. Denote
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by sectZ+(R) the full subcategory of modZ+(R) formed by those M such that

HomR(R0(−n), M) = 0 = Ext1R(R0(−n), M)

for all n ≥ 0. We have M ∈ sectZ+(R) if and only if there is F ∈ H such that

M � Γ+(F ). In fact, from M � Γ+(F ) we get M̃ � F . Moreover, it can be

deduced from [2, 3.14] that M ∈ sectZ+(R) if and only if M � Γ+(M̃).

Thus, the section functor Γ+ induces an equivalence H � sectZ+(R).

Similarly, denote by CMZ(R) the full subcategory of mod
Z
(R) formed by those

modules M such that

HomR(R0(n), M) = 0 = Ext1R(R0(n), M)

for all n ∈ Z, that is, CMZ(R) = modZ
0 (R)⊥. The objects in CMZ(R) are

called graded maximal Cohen-Macaulay modules. Γ induces an equivalence H+ �
CMZ(R). For this, because of [2, 3.14] it is sufficient to show, that Γ(F ) is finitely

generated for each F ∈ H+. Since by [7, 2.4] F is a subobject of a finite direct sum

of shifts of L (and L, if L is a line bundle, which then is a subobject of L(1)), this

follows by left exactness of Γ and noetherianness of R. �
2.1.8 (A Koszul complex). Let R = Π(L, σ) with σ being an efficient automor-

phism. R has the Cohen-Macaulay property in the sense of regular sequences, since

any two non-associated prime elements π1 and π2 define a regular sequence. For

the (two-sided) ideal I = π1R + π2R the factor R/I has Krull dimension zero, and

hence is of finite length [36], and therefore finite dimensional.

Let d1 and d2 be the degrees of π1 and π2, respectively, and assume additionally

that π1π2 = π2π1. Then this regular sequence defines a projective resolution of the

graded right R-module R/I:

0 R(−d1 − d2)

0
@ π2·
−π1·

1
A

R(−d1) ⊕ R(−d2)
(π1· π2·)

R R/I.

By sheafification this leads to the exact sequence

0 L(−d1 − d2)

0
@ π2

−π1

1
A

L(−d1) ⊕ L(−d2)
(π1 π2)

L 0.

�

2.2. Localization at prime ideals

Let R be a graded ring and S ⊂ R be a multiplicative set consisting of ho-

mogeneous elements. Following [36] we call S right Ore, if rS ∩ sR is non-empty

for all r ∈ R and s ∈ S. It is called a right reversible set, if for all r ∈ R and

s ∈ S such that sr = 0 there is s′ ∈ S such that rs′ = 0. (For both conditions it

is sufficient to consider homogeneous elements r, see [84, I.6.1].) S is called a right

denominator set if it is right Ore and right reversible. The left hand versions are

defined similarly. S is called denominator set, if it is a left and right denominator

set.

Let X be a homogeneous exceptional curve and R = Π(L, σ) with σ being

efficient. Since R is a graded domain, reversibility holds automatically for mul-

tiplicative sets. Moreover, each multiplicative set consisting of normal elements
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is a denominator set. For example, if f �= 0 is normal, then {fn | n ≥ 0} is a

denominator set. Denote by Rf = R[f−1] the corresponding ring of fractions.

Let P = Rπ be a prime ideal of height one and let x ∈ X be the corresponding

point. We define the following multiplicative subsets of R consisting of homoge-

neous elements: N (P ) contains all the normal elements not lying in P . The set Y
consists of those non-zero homogeneous elements, where the induced map between

line bundles has cokernel contained in
∐

y �=x Uy, that is, is not supported by x.

Let Y ′ be the set of all homogeneous elements s such that the fibre map sx is an

isomorphism. Finally, denote by C(P ) the set of homogeneous elements in R whose

classes are (left and right) regular (that is, non-zero divisors) in R/P .

Lemma 2.2.1. We have N (P ) ⊂ Y = Y ′ = C(P ). All these multiplicative sets
are denominator sets.

Proof. It is easy to see that all these sets are multiplicative and that

N (P ) ⊂ Y ⊂ Y ′ ⊂ C(P ).

C(P ) consists of those (homogeneous) s ∈ R such that sx ∈ Me(D) is regular

(D a skew field), hence invertible (compare the proof of Theorem 1.2.3). Using

Lemma 1.3.3, the equality Y = Y ′ follows easily. Obviously, N (P ) is a denomi-

nator set. That C(P ) is a denominator set follows from a graded version of [13,

Lemma 2.2]. In orbit case I and II we might use also 1.6.7 for the proof that Y ′ is

a right Ore set: Let r ∈ R be homogeneous and s ∈ Y . Without loss of generality

let s be irreducible. There is some s1 and a prime element π1 such that ss1 = π1,

where Rπ1 �= Rπ. Then

rπ1 = π1r
′ = s(s1r

′)

for some r′, since π1 is normal. The left hand version is similar. �

Lemma 2.2.2. Assume orbit case I or II. Then the graded rings of fractions
RN (P ) and RC(P ) are isomorphic via the natural morphism.

Proof. (Compare also [96, 3.1.7].) Let rs−1 ∈ RC(P ). Compose s = u1 . . . ut

into irreducibles. Then all ui ∈ C(P ). By 1.6.7 there are si and primes πi such that

πi = uisi. Then

rs−1 = ((rst)π
−1
t )(st−1π

−1
t−1) . . . (s1π

−1
1 ) ∈ RN (P ).

Hence the natural morphism is surjective. Injectivity is proved along the same lines:

If rt−1 = 0 in RC(P ) then there is some s ∈ C(P ) with rs = 0. Decomposing s as

above into irreducibles and representing irreducibles as divisors of primes as above

we see that there is some s′ ∈ N (P ) such that rs′ = 0, and hence rt−1 = 0 also in

RN (P ). �

Problem 2.2.3. Assume orbit case III. Does RN (P ) � RC(P ) also hold in this

case? Is each irreducible element a (left and right) divisor of a normal element?

We denote the graded ring of fractions RC(P ) by RP , its zero component by

R0
P . If P is corresponding to the point x, we also write Rx and R0

x, respectively.

We have

RN (P ) =
⋃

f �∈P
f normal

Rf ,
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where Rf denotes the ring of fractions of the form rf−n, with r ∈ R and n ≥ 0.

Denote by HOM(F, G) =
⊕

n∈Z Hom(F, G(n)) and END(F ) = HOM(F, F ).

Denote by Hx the quotient category of H modulo the Serre subcategory spanned

by
∐

y �=x Uy. Denote by qx : H −→ Hx, F �→ Fx the canonical functor. We refer

to [7] for more details about this category.

Proposition 2.2.4. Let Lx be the image of L in Hx. Then

RP � ENDHx
(Lx).

Proof. For homogeneous as−1 ∈ RP , where a (resp. s) is of degree m (resp.

n) in R, let ρ(as−1) = σ−n(a) ◦ (σ−n(s))−1 ∈ HomHx
(Lx, Lx(m−n)). It is easy to

check that this is well-defined and gives an isomorphism of graded rings ρ : RP −→
ENDHx

(Lx). �

Corollary 2.2.5. Let x, y ∈ X be points so that there is an automorphism
ϕ ∈ Aut(X) with ϕ(x) = y. Then R0

x � R0
y.

Proof. The autoequivalence ϕ of H induces an equivalence Hx
∼−→ Hy map-

ping Lx to Ly. �

Recall that a (not necessarily commutative) ring is called a principal ideal

domain if it is a domain and if every left ideal and every right ideal is generated by

a single element.

Proposition 2.2.6. Hx � modZ(RP ) � mod(R0
P ). In particular, R0

P is a
principal ideal domain.

Proof. Note that RP contains a unit u of degree one (take any non-zero

element in R1 with cokernel whose support is disjoint from x; the existence of such

an element follows from [89, 3.6]). Therefore, the restriction to the zero component,

M �→ M0, induces an equivalence mod
Z
(RP ) � mod(R0

P ). By a similar argument,

each line bundle in H becomes isomorphic to Lx in Hx. Moreover, Lx is a projective

generator of Hx. It follows that Hx � mod(EndHx
(Lx)), induced by the functor

HomHx
(Lx,−) (compare also [8, II.1.3]). By the result before, EndHx

(Lx) � R0
P .

As before, let Γ(F ) =
⊕

n∈Z Hom(L, F (n)) ∈ ModZ(R), and let qP :

Mod
Z
(R) −→ Mod

Z
(RP ) be the canonical functor. It is easy to see that each

element of Ext1(L, F (n)) can be annihilated by an element in R of sufficiently high

degree (by 0.4.6), and that each morphism L −→ Sy is annihilated by the element of

R which is given by the kernel. It follows that the composition qp ◦Γ induces an ex-

act functor H −→ modZ(RP ) such that for all F ∈
∐

y �=x Uy we have qP ◦Γ(F ) = 0.

Therefore we get the following diagram of functors:

H
qP ◦Γ

qx

Hx
φ

mod
Z
(RP )

�
mod(R0

P )

φ is the unique (exact) functor defined on the quotient category Hx such that

φ ◦ qx = qP ◦ Γ, and moreover, φ(F ) = (
⊕

n∈Z Hom(L, F (n)))P which is naturally

isomorphic to
⊕

n∈Z Hom(Lx, Fx(n)) (similar to Proposition 2.2.4).
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Each non-zero subobject of Lx is isomorphic to Lx(−n) for some n ≥ 0, hence

R0
P is a right principal ideal domain. Since R0

P is noetherian it follows from [15]

that R0
P is also a left principal ideal domain. �

Corollary 2.2.7 (The structure of tubes). Ux � mod0(R
0
P ), the modules of

finite length over the principal ideal domain R0
P . �

For a similar statement with a complete local domain occurring compare [90,

Thm. 4.2] and 2.2.16 below.

Proposition 2.2.8. Let P = Rπ be a homogeneous prime ideal of height one.
There is a short exact sequence

0 −→ RP
π·−→ RP (d) −→ Se

P −→ 0,

where SP is a simple graded right RP -module and e the multiplicity of the corre-
sponding point. In particular, RP /PP is a graded uniformly simple artinian ring.

Proof. Let S ∈ H be the simple object corresponding to P . Then φ ◦ qx(S)

is a simple graded RP -module, and applying the functor φ ◦ qx to the S-universal

sequence given by π induces the short exact sequence as in the assertion. �

For the notion of a (not necessarily commutative) Dedekind domain we refer

to [77].

Corollary 2.2.9. RP is a graded Dedekind domain, that is, a noetherian
hereditary domain such that each homogeneous, idempotent ideal equals 0 or RP .
In RP the only homogeneous prime ideals are 0 and PP , which is generated by a
normal element. Moreover, PP is the graded Jacobson radical of RP , and each
graded right torsion module is unfaithful. Each non-zero homogeneous ideal is a
power of PP .

Proof. Since RP is a graded principal ideal domain, it follows that it is graded

Dedekind. But there is also a direct argument: For each homogeneous element

0 �= x ∈ RP there is a natural number n = v(x) such that x ∈ Pn
P , but x �∈ Pn+1

P .

If I �= 0, RP is an idempotent ideal, choose a non-zero homogeneous element x ∈ I
with v(x) minimal in order to get a contradiction.

Moreover, the annihilator of each graded simple right module is given by PP �=
0, which follows by a graded version of [77, 4.3.18]. The last statement follows by

a graded version of [77, 5.2.9]. �

Theorem 2.2.10. Let P = Rπ be a homogeneous prime ideal of height one and
S be the associated simple sheaf. Let D be the endomorphism skew field End(S)

and e the multiplicity of the corresponding point. Then P 0
P is the unique non-zero

prime ideal in R0
P and R0

P /P 0
P � Me(D).

Proof. In order to get the isomorphism apply the graded version of the Artin-

Wedderburn theorem [84] and restrict to the zero component. Note that the en-

domorphism ring and the simplicity of S is preserved under the various functors

we applied. It follows that P 0
P is a maximal ideal in R0

P , generated by the normal

element u−dπ1−1 where u ∈ RP is a unit of degree one and d the degree of π. By

the principal ideal theorem [77, 4.1.11] then P 0
P is of height one.

Since PP is the graded Jacobson radical of RP , the zero component P 0
P is the

Jacobson radical of R0
P . The Jacobson radical is the intersection of all primitive
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ideals. It thus follows that P 0
P is the unique maximal ideal in R0

P , and hence it is

the only non-zero prime ideal in R0
P . �

Remark 2.2.11. It follows in particular that R0
P and RP are factorial (graded

factorial, respectively).

Definition 2.2.12. Let s(X) be the square root of the dimension of k(X) over

its centre,

s(X) = [k(X) : Z(k(X))]1/2.

We call it the (global) skewness of X. The curve X is commutative if and only if

s(X) = 1. For any point x ∈ X we call the square root e∗(x) of the dimension of

End(Sx) over its centre the comultiplicity of the point x. (These numbers are just

the PI degrees of the respective skew fields.) The results below indicate that the

multiplicity e(x) plays the role of a “local skewness”.

Corollary 2.2.13 (Upper bound for the multiplicities). The multiplicities are
bounded by the skewness s(X).

More precisely, with the comultiplicity e∗(x) of a point x we have

e(x) · e∗(x) ≤ s(X).

Proof. This is now a direct consequence of general results on polynomial

identities in the context of the Amitsur-Levitzki theorem, see [77, 13.3]. (The

idea of the proof is due to W. Crawley-Boevey [21].) Let e = e(x), e∗ = e∗(x),

s = s(X), D = End(Sx) and P be the corresponding prime ideal of height one. The

localization R0
P is a subring of k(X), and Me(D) is a factor ring of R0

P . Since k(X)

satisfies a (monic) polynomial identity of degree 2s (that is, s is the PI degree of

k(X)) this holds also for Me(D). But 2ee∗ is the smallest degree of a polynomial

identity for Me(D), hence ee∗ ≤ s. �
In particular:

Corollary 2.2.14. If the function field k(X) is commutative then X is mul-
tiplicity free and the endomorphism rings of the simple objects in H are commuta-
tive. �

In 4.3.1 it is shown that conversely the multiplicity freeness implies the com-

mutativity.

The following simple observation is worth noting.

Proposition 2.2.15. If e = 1, then R0
P is local. If e > 1, then R0

P is not even
semiperfect. The same is true for RP in a graded version.

Proof. Since R0
P is a domain, 0 and 1 are the only idempotents in R0

P . On the

other hand, for e > 1 there are non-trivial idempotents in R0
P /P 0

P � Me(D). �

2.2.16 (Completion). With the notations of 2.2.10, let R̂0
P be the P 0

P -adic

completion of R0
P . Then its Jacobson radical is given by P̂ 0

P . By [62, 21.31+23.10]

is R̂0
P a semiperfect ring with R̂0

P /P̂ 0
P � Me(D) and there is a complete local ring

SP such that R̂0
P � Me(SP ), and Ux � mod0(R̂0

P ) � mod0(SP ) holds. Note that

SP does not longer contain information about the multiplicity e.

We have the following property which is well-known for commutative integrally

closed noetherian domains [76, 11.5].



56 2. GLOBAL AND LOCAL STRUCTURE OF THE SHEAF CATEGORY

Proposition 2.2.17.
R =

⋂
ht(P )=1

RN (P ).

Proof. If s−1r ∈ ∩RN (P ), where s is normal, one has to show that r ∈
sR. By factorizing s in prime elements this follows easily. Compare also [13,

Theorem 2.3]. �

2.3. Noncommutativity and the multiplicities

As in the previous section let X be homogeneous and R = Π(L, σ) with σ
efficient. Instead of localizing at a prime ideal, which means to “remove” all other

points, we now exploit the localization with respect to elements whose cokernels

are concentrated in a given point, which means to “remove” just this point. As

application we get that the inequation in 2.2.13 is generically an equation.

Lemma 2.3.1. Let x ∈ X be a rational point. The set of non-zero homogeneous
elements s ∈ R such that coker(s) ∈ Ux is a denominator set.

Proof. The right Ore condition: If s : L −→ L(n) is in the defined set, and

r : L(m) −→ L(n) is a homogeneous element of R (up to shift), consider the

inclusions i and j of the pullback (intersection) L′ of s and r into L and L(n),

respectively. If L′ is in the “wrong” orbit of line bundles, compose them with a

monomorphism f : L(p) −→ L′ with cokernel in Ux, which exists since x is rational.

Then sif = rjf , and coker(jf) ∈ Ux.

For the left Ore condition we consider similarly a pushout diagram of r and s.
If the obtained object of rank 1 decomposes, project to the line bundle summand.

If this line bundle is in the “wrong” orbit, apply again a suitable map with cokernel

in Ux. (Compare [7, Lemma 2.6].) �
Let x be a rational point. We denote the localization of R with respect to the

denominator set of the preceding lemma by R〈x〉, its degree zero component by

R0
〈x〉. In this way we get as affine rings similar principal ideal domains like in [18,

§5]:

Proposition 2.3.2. Let x be a rational point.
(1) As graded rings, R〈x〉 � ENDH/〈Ux〉(L).
(2) H/〈Ux〉 � modZ(R〈x〉) � mod(R0

〈x〉).
(3) R0

〈x〉 is a principal ideal domain.

Proof. Like in the preceding section. We only remark that there is a unit of

degree one in R〈x〉. In fact, since x is rational, π can be written as π = uv where u is

irreducible and of degree one (compare 1.6.5 and 1.6.6), and then (u·1−1)·(v·π−1) =

1 · 1−1. �
Lemma 2.3.3. Let x be a rational point, y �= x and Py the homogeneous prime

ideal associated to y. Let r and s be homogeneous elements of R such that the
cokernel of s �= 0 lies in Ux. Then rs ∈ Py implies r ∈ Py.

Proof. The kernel and the cokernel of the fibre map sy are on the one hand

concentrated in x, on the other hand in y, hence they are zero and sy is an iso-

morphism. By the proof of Theorem 1.2.3, rs ∈ Py means σm(ry) ◦ sy = (rs)y = 0

(where m is the degree of s), and thus ry = 0 follows, which means r ∈ Py. �
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Theorem 2.3.4. Let x be a rational point. For each point y with y �= x denote
by π′

y a normal generator of πyR〈x〉 ∩ R0
〈x〉. Then

(1) We have R0
〈x〉/π′

yR0
〈x〉 � Me(y)(Dy), where Dy = End(Sy).

(2) Let U ⊂ X \ {x} be an infinite subset. Then
⋂

y∈U π′
yR0

〈x〉 = 0.
(3) There is a point y ∈ U such that e(y) · e∗(y) = s(X).

Proof. (1) This follows as in 2.2.10 with a version of 2.2.8.

(2) Using the preceding lemma we get ∩y �=xπyR〈x〉 = 0 from 1.3.6, and inter-

secting with the component of degree zero gives the result.

(3) By (1) and (2) there is an inclusion R0
〈x〉 ⊂

∏
y∈U Me(y)(Dy). Since the

PI degree of R0
〈x〉 coincides with the PI degree of its quotient division ring ([1,

Thm. 7]), which is k(X) (since there is a unit in R〈x〉 of degree one), the assertion

follows. �

Corollary 2.3.5. Let X be an exceptional curve. Then the equality

e(y) · e∗(y) = s(X)

holds generically, that is, for all points y ∈ X except finitely many.

Proof. Let x be rational. The set {y ∈ X | y �= x, e(y) · e∗(y) �= s(X)} must

be finite by part (3) of the preceding theorem. (Obviously, this holds also in the

weighted situation.) �

Remark 2.3.6. In general points x such that e(x) ·e∗(x) �= s(X) may exist. For

example, for the bimodule M = C ⊕ C over the real numbers this inequality holds

precisely for the points corresponding to the prime ideals generated by X and Y ,

respectively, in the orbit algebra C[X; Y, · ]. (Note that these two points are just

the separation points on the boundary. See 5.6.1 (5) for more details.)

It is an interesting question which role those finitely many points play where

inequality holds and whether there is a connection to the ghost group.

Corollary 2.3.7. Assume that there is an infinite subset U of points x whose
corresponding simple sheaves Sx all have commutative endomorphism rings. Then
there is a point x ∈ U such that e(x) = s(X). �

Corollary 2.3.8. Let X be an exceptional curve over a finite field k. Then
there is a point x ∈ X such that e(x) = s(X). Actually, this holds for all except
finitely many points.

Proof. Since each finite skew field is commutative (Wedderburn), we have

e∗(x) = 1 for all x ∈ X. Since X contains always infinitely many points, the result

follows from the preceding results. �

Corollary 2.3.9. Let k be a finite field. Then X is commutative if and only
if X is multiplicity free.

Proof. Follows directly from 2.2.13 and 2.3.8. �

We will show in 4.3.1 that the preceding corollary holds over any field. Hence

our results show that the multiplicity function e measures noncommutativity, locally

and globally.
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Problem 2.3.10. Is it true that s(X) is always the maximum of e? Is this

maximum taken on even by a rational point? Are there always infinitely many

points (even rational points, if k is infinite) x such that End(Sx) is commutative?

(For the class of examples in 1.7.11 the answer to all three questions is positive.)

Problem 2.3.11. Understand the role each single multiplicity e(x) (and co-

multiplicity e∗(x)) plays in terms of the function field. In particular: Is each e(x)

and e∗(x) or their product a divisor of s(X)?

2.4. Localizing with respect to the powers of a prime element

In this section we describe affine parts of the curve X by localizing with respect

to the powers of certain prime elements.

Lemma 2.4.1. Let x ∈ X, and assume that f(x) is even in orbit case III. Let
πx ∈ R be the corresponding prime element and Sx the corresponding simple object.

(1) Let s ∈ R be homogeneous such that s �= 0 and coker(s) ∈ Ux. Then
there is factorization s = u1 . . . ut, where each ui ∈ R is irreducible such that
coker(ui) � Sx. Moreover, each ui is a (left and right) divisor of πx.

(2) The multiplicative subset of all homogeneous s ∈ R such that s �= 0 and
coker(s) ∈ Ux is a denominator set.

(3) Each fraction rs−1, with s �= 0 homogeneous such that coker(s) ∈ Ux, can
be written as r′π−n

x for some r′ ∈ R and some n ≥ 0.

Proof. (1) The factorization of s follows as in the proof of Proposition 1.6.6

considering a chain of projections from the cokernel of s decreasing the length in

each step by one; the cokernel of each ui is isomorphic to Sx (since in orbit case III

we assume that f(x) is even). Each ui is a divisor of πx by Lemma 1.6.7.

(2) Follows as in the proof of Lemma 2.2.1.

(3) Follows by a similar argument given in the proof of Lemma 2.2.2. �

2.4.2 (Quasi-rational points). In orbit case III, ring theoretically rational points

behave more complicated in some sense than points x with f(x) = 2, compare

Proposition 1.6.6, or the preceding lemma.

We call a point x ∈ X quasi-rational if the prime element πx factors into

irreducibles of degree one and with simple cokernel. That is,

x is quasi-rational ⇐⇒
{

f(x) = 1 in orbit cases I and II,

f(x) = 2 in orbit case III.

Since rational points always exist, trivially also quasi-rational points exist in

orbit cases I and II. In orbit case III, a quasi-rational point exists if and only if there

is a non-zero map f ∈ Hom(L, L(1)) which cannot be decomposed into a product of

maps from Hom(L, L) and Hom(L, L(1)), that is, f is 1-irreducible. The existence

of such a map is open in general, but one should expect that this follows by a

similar dimension argument like in [29, 2.4].

Problem 2.4.3. Do quasi-rational points always (in orbit case III) exist?

Proposition 2.4.4. Let π = πx ∈ R be a prime element corresponding to a
quasi-rational point x. Let Rπ = R[π−1] = {rπ−n | r ∈ R, n ≥ 0}. Denote by R0

π

its component of elements of degree zero.
(1) As graded rings, Rπ � ENDH/〈Ux〉(L).



2.5. ZARISKI TOPOLOGY AND SHEAFIFICATION 59

(2) H/〈Ux〉 � modZ(Rπ) � mod(R0
π).

(3) R0
π is a principal ideal domain.

Proof. (1) Note that each homogeneous fraction in ENDH/〈Ux〉(L) can be

written as fraction rs−1 such that r, s ∈ R are homogeneous with s �= 0 and

coker(s) ∈ Ux. With the preceding lemma the assertion follows as in Proposi-

tion 2.2.4.

(2) and (3) follow similarly as in the proof of Proposition 2.2.6. Note that there

is a unit of degree one in Rπ. In fact, since x is quasi-rational, π can be written

as π = uv where u is irreducible and of degree one (compare 1.6.5 and 1.6.6), and

then (u · 1−1) · (v · π−1) = 1 · 1−1. �

2.5. Zariski topology and sheafification

As before, let X be homogeneous with hereditary category H and orbit algebra

R = Π(L, σ), where σ is efficient.

From the Artin-Zhang version of Serre’s theorem we deduced some formal

“sheafification functor” ·̃ : modZ(R) −→ H. In this section we briefly sketch

how we get such a functor in a more explicit manner.

We identify X with the set of height one homogeneous prime ideals in R, hence

X = Proj(R). If f is a normal element, denote by Xf the subset of all prime ideals

P such that f �∈ P . The following lemma is easy to show.

Lemma 2.5.1. The system of sets Xf (f �= 0 normal, non-unit) forms a basis
for a topology such that X is connected and the proper closed sets are precisely the
finite subsets of X. �

It is routine to define graded coherent and quasi-coherent sheaves over X and we

get a sheafification functor ·̃ : Mod
Z
(R) −→ Qcoh(X), M �→ M̃ , where M̃(Xf ) =

Mf , the localization of M with respect to the powers of f , where the structure sheaf

OX is defined by OX(Xf ) = Rf . For each point x ∈ X the stalk is given by the

localization RN (P ), where P is the homogeneous prime ideal corresponding to x.

By 2.2.17 it follows that OX(X) = R. For the global section functor Γ = Γ(X,−) :

Qcoh(X) −→ ModZ(R) one shows the following properties:

• Γ is right adjoint to ·̃ (using the natural morphism ρM : M −→ M̃(X),

assigning to m ∈ M all the fractions m1−1 ∈ Mf = M̃(Xf )).

• ·̃ ◦ Γ � 1.

Moreover, there is the following version of Serre’s theorem.

Proposition 2.5.2 (Serre’s theorem). Sheafification

·̃ : mod
Z
(R) −→ coh(X)

induces an equivalence

coh(X) � modZ(R)

modZ
0 (R)

.

Proof. We only show that mod
Z
0(R) is the kernel of the sheafification functor.

Denote by m the graded Jacobson radical of R. We have M̃ = 0 if and only if

Mf = 0 for all normal elements f ∈ m. Since each graded simple R-module is of

the form (R/m)(n) for some n ∈ Z, we see that M̃ = 0 if M is of finite length.
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For M ∈ modZ(R) there is a finite sequence 0 = M0 ⊂ · · · ⊂ Ms = M
of submodules such that Mi/Mi−1 is a fully faithful (and torsionfree) left R/Pi-

module, where Pi is the corresponding affiliated prime ideal (see [36, 2.+8.]). If

M̃ = 0, then for all normal f ∈ m it follows that fn is contained in the annihilator

of M for some n ≥ 0, hence f ∈ Pi and thus Pi = m for all i = 1, . . . , s. Therefore

M is of finite length. �
Corollary 2.5.3. H is equivalent to coh(X). �
There is the commutative diagram

H
Γ+

�

modZ(R)
T

f·

modZ(R)

modZ

0(R)

coh(X)

where T is the quotient functor and T ◦ Γ+ gives an equivalence. Identifying H
with coh(X) via the equivalence ·̃ ◦Γ+, it is clear that the efficient automorphism

σ (defining R) corresponds to the degree shift on modZ(R), X �→ X(1). Moreover,

R̃(n) = L(n).

We get the following statement which is a generalization of the statement which

sometimes is referred to as Grothendieck’s lemma if X = P1(k).

Corollary 2.5.4. Each indecomposable vector bundle over X is isomorphic to
L(n) or to L(n) for some n ∈ Z. �

Here, the number n is unique in orbit cases I and III; in orbit case II one has

L = L(1). Moreover, L is not a line bundle precisely in orbit case I.



CHAPTER 3

Tubular shifts and prime elements

This chapter is motivated by the question when two tubular shifts σx and

σy coincide. Whereas the answer over an algebraically closed field is trivial this

question becomes interesting over an arbitrary field and we will show that it is

linked to (the centre of) the function field.

In Chapter 1 we got the graded factoriality of R = Π(L, σ) (with σ efficient)

by showing that there is a one-to-one correspondence between points x ∈ X and

prime elements πx (up to multiplication with some unit), naturally given by forming

universal extensions. In this chapter we show that this actually extends to a natural

correspondence between prime elements πx and tubular shifts σx together with the

natural transformations 1H
x−→ σx; in fact, such a transformation is induced by

right multiplication with πx.

As a consequence we get a relation between the tubular shifts and the degree

shift. The difference between tubular shifts and the degree shift is given by ghosts

arising from prime elements which are not central (up to multiplication with a

unit). Thus we get important information on the structure of the Picard group. In

particular, this group is not always torsionfree.

3.1. Central prime elements

Let X be a homogeneous exceptional curve with structure sheaf L and σ be

an efficient automorphism. Let R = Π(L, σ) be the corresponding orbit algebra.

Recall, that we denote σn(F ) also by F (n) for F ∈ H and also for F ∈ modZ(R)

(degree shift).

3.1.1 (Central multiplication). It is convenient to consider first the special,

central case. Let r ∈ R be a central homogeneous element of degree n. Then

multiplication from the right with r induces a homomorphism M
·r−→ M(n) for

each M ∈ modZ(R) (right modules), and by sheafification, this induces also a

morphism M̃
·r−→ M̃(n) in H. We obtain a natural transformation 1H

·r−→ σn. It

follows easily that

• for M = R we get ·r = r ∈ Hom(L, L(n));

• if we apply the functor Γ+ to F
·r−→ F (n) in H, then we get back multi-

plication with r on the level of graded right R-modules.

Theorem 3.1.2. Let R = Π(L, σ) with σ being efficient. Let x ∈ X such
that the prime element πx ∈ R is central of degree d. Then there is a natural
isomorphism from the tubular shift σx to the degree shift σd, which is compatible
with the natural transformations 1H

x−→ σx and 1H
·πx−→ σd.

61
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Proof. Let M ∈ H+ be of rank r > 0. Let S = Sx be the simple object

concentrated in x. There is the universal extension

0 −→ M
αM−→ σx(M) −→ Ext1(S, M) ⊗End(S) S −→ 0.

The morphism M
·πx−→ M(d) is a monomorphism and its cokernel is concentrated in

the point x and of length r ·e(x): using a line bundle filtration of M and induction,

it suffices to show this for line bundles L′. If L′ is a shift of L then the cokernel

is S
e(x)
x . In orbit case III we have to consider also the case L′ = L. There is an

irreducible map L
u−→ L, and the cokernel S0 is a simple object. One can assume

that S0 �� Sx. It then follows that the cokernel of the map L
·πx−→ L(d) is also

isomorphic to S
e(x)
x .

We have to show that the cokernel C of M
·πx−→ M(d) is semisimple: The map

C
·πx−→ C(d) is zero, which follows from the commutative exact diagram

0 M
·πx

·πx

M(d)
p

·πx(d)

C

·πx

0

0 M(d)
·πx(d)

M(2d)
p(d)

C(d) 0.

Applying the exact functor φ ◦ qx from 2.2.6 we get a short exact sequence of

right RP -modules:

0 −→ MP
·πx−→ M(d)P −→ CP −→ 0.

Since the map C
·πx−→ C(d) is zero, we see that CP is a graded RP /PP -module,

hence semisimple by 2.2.8. It follows that C is a direct sum of copies of S.

Hence we get a commutative, exact diagram

0 M
αM

M(x)
βM

Mx 0

0 M
·πx

M(d)

iM

C

jM

0,

with isomorphisms iM and jM (compare 0.4.2 (2)). With the uniqueness prop-

erty 0.4.2 (1) of σx(f) it follows easily that for each f ∈ Hom(M, N) (with N ∈ H+)

we have σx(f)◦ iM = iN ◦f(d). Therefore, the functors σd and σx are naturally iso-

morphic on H+. (Actually, the argument shows, that this holds everywhere outside

Ux.) With Lemma 1.2.2, presenting each object in H0 as cokernel of a monomor-

phism between objects from H+, the result follows by diagram chasing. �

Corollary 3.1.3. Let x, y ∈ X such that the corresponding prime elements
πx and πy are central of the same degree in R. Then the tubular shifts σx and σy

are isomorphic. �

3.2. Non-central prime elements and ghosts

3.2.1 (Normal multiplication). We generalize Theorem 3.1.2 to arbitrary prime

elements. Therefore, assume that r ∈ R is a (non-zero) normal element of degree n.

Then r induces the automorphism γ = γr of the graded algebra R, by the formula
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sr = rγ(s). Let M ∈ modZ(R). Denote by Mγ the object in modZ(R), where M
and Mγ coincide as abelian groups, and where the R-action on Mγ is defined by

m ·γ s
def
= m · γ(s).

Then multiplication ·r : m �→ m · r defines a morphism between the graded right

modules M and Mγ(n), since

(m · s) · r = m · (s · r) = m · (r · γ(s)) = (m · r) ·γ s.

Since obviously γ(m) = m, the algebra automorphism γ gives rise to an automor-

phism γ∗ by γ∗(M) = Mγ on modZ(R) and (denoted by the same symbol) also

on H =
modZ(R)

modZ

0(R)
, such that σ ◦ γ∗ = γ∗ ◦ σ; moreover, γ∗(M̃) = M̃γ . Sheafifi-

cation gives a homomorphism M̃
·r−→ M̃γ(n), yielding a natural transformation

1H
·r−→ σn ◦ γ∗ = γ∗ ◦ σn. Obviously, γ gives rise to an isomorphism R −→ Rγ

of graded right R-modules, hence γ∗ leaves L fixed, that is, γ∗ ∈ Aut(X). Note

that after identifying R with Rγ via γ, the functor γ∗ on modZ(R) acts on el-

ements f · of Hom(R, R(m)) (in contrast to Hom(Rγ , Rγ(m))!) like γ−1, since

(γ−1 ◦ (γ∗(f ·)) ◦ γ)(r) = γ−1(f) · r. We will also make use of the notation

γ∗ = (γ−1)∗. �

The k-algebra automorphisms induced by normal elements are special cases of

a more general class of graded algebra automorphisms:

Definition 3.2.2. An automorphism γ of the graded k-algebra R is called

prime fixing , if for all homogeneous prime ideals P (of height one) we have γ(P ) =

P . In other words, γ is prime fixing if and only if for each prime element π there

is a unit u ∈ R∗
0 such that γ(π) = πu. Denote by Aut0(R) the subgroup of Aut(R)

of all graded algebra automorphisms, which are prime fixing.

Examples of prime fixing automorphism are the inner automorphisms ιu (u ∈
R∗

0) given by ιu(r) = u−1ru, defining the subgroup Inn(R), and automorphisms

ϕa defined in the following way: Let a = (ai)i≥1 be a sequence of elements ai ∈
Z(R0)

∗ with rai = ai+1r for all homogeneous elements r ∈ R of degree one. Then

ϕa(r) = a1 · a2 · . . . · an · r (for each homogeneous r ∈ R of degree n) defines an

automorphism ϕa ∈ Aut0(R). (Recall that R is generated in degrees 0 and 1.) We

denote the subgroup of Aut(R) generated by all ιu and all ϕa by Inn(R) which is

a normal subgroup of Aut(R). �

Let a = (ai) be a sequence as above defining ϕa. Since R contains central

homogeneous elements (see 4.1.3) there is n ≥ 1 such that

(3.2.1) ai+n = ai for all i ≥ 1.

If ra1 = a1r for some r of degree one then n = 1 can be chosen, and a1 lies in the

centre of R. This is the case, for example, if there is a central element of degree

one in R.

Proposition 3.2.3. (1) Let γ be a graded algebra automorphism of R. Then
the induced automorphisms γ∗ and γ∗ on H are automorphisms of X. Moreover, γ∗

is trivial (that is, isomorphic to the identity) if and only if γ ∈ Inn(R). Hence the
assignment γ �→ γ∗ induces an injective group homomorphism from Aut(R)/Inn(R)

into Aut(X).
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(2) Let γ be a prime fixing automorphism. Then the induced automorphisms
γ∗ and γ∗ on H are elements of the ghost group. Hence, there is an injective group
homomorphism from Aut0(R)/Inn(R) into the ghost group G.

(3) Let r ∈ R be normal. The associated algebra automorphism γ = γr is prime
fixing, and it is inner if and only if there is some unit u ∈ R∗

0 such that ru is central.

Proof. (1) As already seen above γ∗ fixes L, hence is an automorphism of

X. Using [81, IV.5] the automorphism γ induces the identity on ModZ(R) (or

modZ(R)) if and only if the restriction of γ∗ to the full subcategory generated by

the shifts R(n) (n ∈ Z) is isomorphic to the identity, that is, for each integer i there

are commutative diagrams

(3.2.2) R(i − 1)

r·

fi−1

∼ Rγ(i − 1)

r·

R(i)
fi

∼ Rγ(i)

for all r ∈ R of degree one (and similarly of degree zero). If this is the case,

setting u = f0(1), aifi(1) = fi−1(1) for all i ≥ 1, then γ = ιu ◦ ϕa follows.

For the converse, if γ = ιu is inner, then fi(s) = uγ(s) defines isomorphisms

making (3.2.2) commutative. If γ = ϕa is given by a sequence a = (ai)i≥1 as

above then fi(s) = a−1
i · . . . · a−1

1 · γ(s) defines isomorphisms for i ≥ 0 such that

the diagrams (3.2.2) commute for each i ≥ 1. With (3.2.1) isomorphisms fi can be

defined also for i < 0 in a similar way so that for each integer i the diagrams (3.2.2)

commute.

If γ induces the identity on modZ(R) then also on the quotient category H =

mod
Z
(R)/ mod

Z
0 (R). Using the section functor Γ the converse follows with 2.1.7.

(2) Let x ∈ X and πx be the associated prime element of degree d. By assump-

tion, there is some u ∈ R∗
0 such that γ(πx) = πxu. Then L

πx−→ L(d) induces (via

Γ+) the commutative, exact diagram of right graded R-modules

0 R
πx·

(u·)◦γ �

R(d)

γ(d)�

R/πxR 0

0 Rγ
πx·

Rγ(d) Rγ/πxRγ 0,

and sheafification implies (using ·̃ ◦ Γ+ = 1H)

(3.2.3) 0 L
πx

�

L(d)

�

Lx

�

0

0 γ∗(L)
πx·

γ∗(L)(d) γ∗(Lx) 0.

Since γ∗ fixes Lx = S
e(x)
x , the point x is fixed. It follows that γ∗ ∈ G.

(3) From almost commutativity 1.6.4 it follows, that γr is prime fixing. The

rest is clear. �

In particular ghosts are obtained in the following way.
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Corollary 3.2.4. Assume that in R there is a central element of degree one.
Let r ∈ R be normal. If for all units u ∈ R∗

0 the element ru is not central then for
γ = γr we have γ∗ �� 1H, thus γ∗ is a ghost.

Proof. By the assumption, γ �∈ Inn(R). �
The proof of statement (2) in Proposition 3.2.3 shows that there is the following

more general fact.

Proposition 3.2.5. Let γ be a graded algebra automorphism of R. Let x, y be
points in X with corresponding homogeneous prime ideals Px, Py and simple objects
Sx, Sy, respectively. If γ(Px) = Py then γ∗(Sx) � Sy. In particular, γ is prime
fixing if and only if γ∗ is point fixing. �

Definition 3.2.6. An element γ of Aut(X) is called liftable to R, if there is a

graded k-algebra automorphism φ of R such that φ∗ represents γ.

Thus, a ghost γ is liftable to R if and only if its class in G lies in the image of

the injective homomorphism Aut0(R)/Inn(R) −→ G.

Problem 3.2.7. Is any ghost liftable to R? Is Aut0(R) modulo Inn(R) gener-

ated by all the γr (r ∈ R normal/prime)?

The main result of this chapter is the following.

Theorem 3.2.8. Let R = Π(L, σ) with σ being efficient. Let y ∈ X with
associated prime element πy ∈ R of degree d. Let γ = γπy

be the associated algebra
automorphism of R and γ∗ the induced automorphism of H. Then there is a natural
isomorphism from the tubular shift σy to σd◦γ∗, which is compatible with the natural
transformations 1H

y−→ σy and 1H
·πy−→ σd ◦ γ∗.

Proof. Consider the proof of Proposition 3.2.3 (2) with r = πy = πx (hence

u = 1). Using the identity πy ·s = γ−1(s) ·πy for all s ∈ R, the lower exact sequence

in the diagram (3.2.3) induces the commutative diagram

0 γ∗(L)
πy·

� γ−1

γ∗(L)(d) γ∗(Ly)

�

0

0 L
·πy

γ∗(L)(d) Ly 0,

and hence L
·πy−→ γ∗(L)(d) yields an Sy-universal extension. The rest of the proof

is completely analogue to the proof of 3.1.2. �
Corollary 3.2.9. If m is a positive integer such that πm

y is central up to
multiplication with some unit, then σm

y is naturally isomorphic to σmd.

Proof. By the assumption, γm is an inner automorphism on R. �
Corollary 3.2.10. Let x1, . . . , xs ∈ X and πx1 , . . . , πxs

∈ R corresponding
primes. Denote by di = e(xi)f(xi)/ the degree of πxi

. Let m1, . . . , ms be integers.
Then

(3.2.4) σm1
x1

◦ . . . ◦ σms
xs

� σ
Ps

i=1 midi ◦ (γ∗
πx1

)m1 ◦ . . . ◦ (γ∗
πxs

)ms .

Proof. This follows from Theorem 3.2.8 together with the fact that the γ∗
πxi

commute with all γ∗
πxj

and all σxj
(by 0.4.8 and 1.6.2). �
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Corollary 3.2.11. Let G′ be the subgroup of the ghost group G generated by
the automorphisms γ∗

πx
(x ∈ X). Then Pic(X) ⊂ 〈σ〉 × G′. �

Corollary 3.2.12. Let x1, . . . , xs ∈ X and πx1 , . . . , πxs
∈ R corresponding

primes. Denote by di = e(xi)f(xi)/ the degree of πxi
. Let m1, . . . , ms be integers.

The following are equivalent :
(1) σm1

x1
◦ . . . ◦ σms

xs
� 1H.

(2)
∑s

i=1 midi = 0 and the graded automorphism γm1
πx1

◦ . . . ◦ γms
πxs

of R is in
Inn(R). �

Remark 3.2.13. Assume that there is a central element in R = Π(L, σ) of

degree one. This is equivalent to assuming that σ = σx is an efficient tubular

shift. Note that the existence of an efficient tubular shift σx is equivalent to the

existence of a prime element of degree one in Π(L, σ) (where σ is an arbitrary

efficient automorphism). All this follows by Theorem 3.2.8 and Lemma 1.7.1. It

follows that in the example in 1.1.13 (4) there is no prime element in R of degree

one.

The existence of a central element of degree one implies the following:

(1) The subgroup Inn(R) is generated by Inn(R) and automorphisms ϕa

where a is the constant sequence with value a ∈ Z(R)∗.
(2) If r �= 0 is normal, then γr ∈ Inn(R) implies γr ∈ Inn(R).

Corollary 3.2.14. Assume that there is a central element in R of degree
one. Let x1, . . . , xs ∈ X and πx1 , . . . , πxs

∈ R corresponding primes. Denote by
di = e(xi)f(xi)/ the degree of πxi

. Let m1, . . . , ms be integers. The following are
equivalent :

(1) σm1
x1

◦ . . . ◦ σms
xs

� 1H.
(2)

∑s
i=1 midi = 0 and the graded automorphism γm1

πx1
◦ . . .◦γms

πxs
of R is inner.

(3) There is a unit u ∈ R∗
0 such that the element uπm1

x1
. . . πms

xs
is a central

element of degree zero in the graded quotient division ring QuotZ(R).
(4) There is a unit u ∈ R∗

0 such that the element uπm1
x1

. . . πms
xs

lies in the centre
of the function field k(X).

Note that we get as a special case a criterion for two tubular shifts σx and σy

to be isomorphic.

Proof. From the preceding corollary and remark we get the equivalence of (1)

and (2), and also the equivalence of (2) and (3).

For the equivalence of (3) and (4) note that by the existence of the central unit

of degree one we have QuotZ(R) = k(X)[T, T−1], where T is a central variable of

degree one. Then an element which lies in the centre of k(X) also lies in the centre

of QuotZ(R). �
We conclude the chapter by reformulating some results in the language of di-

visors.

3.2.15 (Divisors). (1) Denote by N ∗
0 the group of non-zero elements in k(X)

which are fractions of normal elements in R (of the same degree). Denote by Div(X)

the abelian group of all formal sums of the form
∑

x∈X mxx where mx ∈ Z, almost

all zero. It follows from 1.6.3 that there is an exact sequence of groups

1 −→ R∗
0 −→ N ∗

0
div−→ Div(X)

dege−→ Z,
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where dege(x) = e(x)f(x)/ and where div is induced by the correspondence Rπx �→
x from 1.5.2. It follows from (3.2.4) that dege is surjective if and only if the positive

integers e(x)f(x)/ (x ∈ X) generate the group Z.

(2) Assume that there is a central element in R of degree one. Denote by Z∗
0 the

subgroup of N ∗
0 /R∗

0 given by the classes which admit representatives lying in the

centre of k(X). The preceding discussion has shown that there is an exact sequence

of abelian groups

0 −→ Z∗
0 −→ N ∗

0 /R∗
0 −→ Pic0(X) −→ 0.

Examples 3.2.16. (1) The twisted polynomial case. Let R = F [X; Y, α], let x
and y be the points corresponding to the primes X and Y , respectively. Since any

prime ideal of height one different from RY is generated by a central element, for

any points z1, z2 different from y we have σz1 � σz2 if and only if d(z1) = d(z2). If

α is not inner, then σx and σy are not isomorphic.

(2) The square roots case. Let R = Q〈x, y, z〉 be the graded factorial algebra

from 1.7.12. It is easy to see that x (central), y and z are (up to multiplication

with units) the only prime elements of degree one (using linear independence of x,

y, z and Lemma 1.6.2). So there are precisely three unirational points, and the

associated tubular shifts are pairwise non-isomorphic.

Further applications of the results of this section are discussed in Section 5.4

and in 5.7.2.





CHAPTER 4

Commutativity and multiplicity freeness

In this chapter we characterize the exceptional curves X which are commutative.

We show that X is commutative if and only if it is multiplicity free. The proof of

this is an application of the graded factoriality.

4.1. Finiteness over the centre

Before we characterize those exceptional curves which are commutative, we

remark that exceptional curves in general are close to commutativity in the sense

that they have a “large” centre. On the other hand, in the following sections it will

be pointed out that they are commutative only in very special cases.

Let X be a homogeneous exceptional curve. It is well-known that the function

field k(X) is of finite dimension over its centre [7]. A similar result is true for the

orbit algebras.

Let σ be efficient and R = Π(L, σ).

Proposition 4.1.1. Let T = L⊕L and S = Π(T, σ). Then S is module-finite
over its noetherian centre.

Proof. By [11] it is sufficient to show that S is a semiprime noetherian PI

ring of global dimension two. This follows as in [7, Thm. 6.5]. �

Corollary 4.1.2. Let R = Π(L, σ). Then R is module-finite over its noether-
ian centre.

Proof. Let e =

(
1L 0

0 0

)
, which is an element of degree zero in S = Π(T, σ)

with e2 = e. Moreover, R � eSe ⊂ S. Let C be the centre of S. Then eCe is

commutative, noetherian and lies in the centre of eSe = R. Since S is a finitely

generated C-module by the proposition, R is finitely generated over eCe. Then R
is also finitely generated over its centre. �

Corollary 4.1.3. Let C be the centre of R. The assignment P �→ P ∩C is a
bijection from the homogeneous prime ideals of height one in R onto the homoge-
neous prime ideals of height one in C.

Proof. We refer to graded versions of results in the literature: The surjectivity

of the map follows by general properties of finite centralizing extensions [77, 10.2].

The injectivity follows from [36, 11.20] since in our situation cliques of prime ideals

of height one are singletons. �

Problem 4.1.4. What is the geometric interpretation of this map? What is

the structure and explicit form of the centre?

See [18] for another approach studying this centre.

69
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Corollary 4.1.5. The centre of R is a graded normal domain of Krull dimen-
sion two.

Proof. It is sufficient to show that C is graded normal. Let rs−1 be a homo-

geneous element in the graded quotient field of C, which is a subfield of the graded

quotient ring RX−1, where X is the multiplicative set of normal elements. Then r
and s are normal elements, and we cancel common prime factors in r and s and get

a fraction rs−1 = r′s′−1 ∈ RX−1, where r′ and s′ have no common prime factor.

If rs−1 is integral over C, then we see that s′ has no prime factor, hence is a unit

in R, and rs−1 = r′ ∈ R. We get r = r′s, and since r and s are central, also r′ is

central, that is, r′ ∈ C: For each x ∈ R we have

xr′s = xr = rx = r′sx = r′xs,

and s can be canceled. �

4.2. Commutativity of the coordinate algebra

If k is not algebraically closed it happens very rarely that the orbit algebra

Π(L, σ) is commutative1. It is shown in [54] (if the characteristic of k is different

from two) that a small preprojective algebra is commutative if and only if there

is some (commutative) finite field extension K/k such that the tame bimodule M
is the Kronecker bimodule K(K ⊕ K)K or a (4, 1)- or (1, 4)-bimodule of a skew

field of quaternions over K. So it is commutative only in very special cases. This

result carries over to our type of orbit algebras. Another proof will be given by

Theorem 4.3.5.

Theorem 4.2.1. Assume that the characteristic of k is different from two. Let
R = Π(L, σ), where σ is efficient. Then R is commutative if and only if there is a
(commutative) finite field extension K/k such that as graded algebras either

(a) R � K[X, Y ], the polynomial algebra graded by total degree; or
(b) R � K[X, Y, Z]/Q, where Q = Q(X, Y, Z) is an anisotropic quadratic

form over K.
Moreover, in case (a) M is the Kronecker bimodule K ⊕K over K; in case (b) M
is the bimodule KFF , where F is a skew field of quaternions over K. �

Let Λ be the corresponding tame bimodule algebra. If we assume that k is the

centre of Λ, then for the field extension K/k in theorem we have K = k.

Recall, that X is multiplicity free, if e(x) = 1 for all x ∈ X. We call R almost
commutative2, if for all homogeneous r, s ∈ R there is an α ∈ R∗

0 such that rs = αsr.
Since in orbit case III the (2, 2)-bimodule is simple, each rational point x (that is

f(x) = 1), which always exists, has multiplicity e(x) > 1 (by 0.6.1). Hence, X is

never multiplicity free in orbit case III.

Proposition 4.2.2 (Almost commutativity). R is almost commutative if and
only if X is multiplicity free.

Proof. If e(x) = 1 for all x ∈ X then the prime elements are just the irre-

ducible elements by 1.6.5 and 1.6.7. Then the almost commutativity follows by

Proposition 1.6.3 since each non-zero homogeneous element is a product of irre-

ducible elements.

1Commutativity is always meant in the usual and not in the graded sense.
2In the literature the term is also used with another meaning [77].
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Conversely, if almost commutativity holds then each homogeneous prime ideal

of height one (which is principal) is easily seen to be completely prime. Now apply

Theorem 1.2.3 (3). �
The preceding proposition will be strengthened in the following section.

4.3. Commutativity of the function field

As was pointed out by Ringel [90] there is a strange commutativity behaviour

of the function field (see also [23]). For example ([90]) the bimodule RHH with

noncommutative data leads to the commutative function field

Quot
(
R[U, V ]/(U2 + V 2 + 1)

)
whereas the bimodule QQ(

√
2,
√

3)Q(
√

2,
√

3) with commutative data leads to the

noncommutative function field given by the quotient division ring of

Q〈U, V 〉/(UV + V U, V 2 + 2U2 − 3).

(Compare also Proposition 1.7.12.) We will explain this effect in this section.

Recall that an exceptional curve X is called commutative if its function field

k(X) is commutative. The main result of this section is the following theorem. (Note

that we allow also the weighted case in the theorem since it makes no difference.)

Theorem 4.3.1. Let X be an exceptional curve. The following statements are
equivalent:

(1) X is commutative.
(2) X is multiplicity free.
(3) For each rational point x ∈ X we have e(x) = 1.

In this case and if additionally char k �= 2 there is some finite field extension K/k
such that

• k(X) � K(T ) if the numerical type of X is ε = 1; or
• k(X) is isomorphic to the quotient field of K[U, V ]/(−aU2 − bV 2 + ab)

for some anisotropic quadratic form −aX2 − bY 2 + abZ2 over K if the
numerical type of X is ε = 2.

Remark 4.3.2. (1) It follows (together with Theorem 5.3.4 and Proposition

5.5.1) that if char k �= 2 and X is commutative then the ghost group G is trivial.

(2) In the theorem, K is the field End(L) and is the centre of H.

Since the function field and the multiplicities are preserved by insertion of

weights, it is sufficient to treat the homogeneous case.

Note that in case k is a finite field the equivalence (1)⇔(2) is given by Corol-

lary 2.3.9. The implication (1)⇒(2) is given by 2.2.14. We give now another

argument for this.

Proposition 4.3.3. Let X be homogeneous. Let x ∈ X be some point. Then as
graded algebras, Π(L, σx) ⊂ k(X)[T ], where T is a central variable. In particular,
if k(X) is commutative, so is Π(L, σx).

Proof. Let H = H/H0. The natural transformation 1H
x−→ σx induces a

natural isomorphism 1H
x−→ σx. Denote by L the class of L in H. Then there is

an isomorphism of graded rings

EndH(L)[T ] −→
⊕
n≥0

HomH(L, σn
x(L)), fTn �→ f ∗ xn

L
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(where on the right hand side the multiplication and the power of xL are taken in

the orbit algebra sense), and Π(L, σx) embeds naturally. �

Corollary 4.3.4. Let X be homogeneous. Assume that the function field is
commutative. Then X is multiplicity free. Moreover, there is some unirational point
x such that the orbit algebra Π(L, σx) is commutative graded factorial.

Proof. Take any point x and form the orbit algebra R = Π(L, σx) with re-

spect to the (not necessarily efficient) associated tubular shift σx. By the preceding

proposition R is commutative. Moreover, by Serre’s theorem 2.1.2, R is a homo-

geneous coordinate algebra for X, and hence “classical” algebraic geometry shows

that X is multiplicity free (see for example [55]). In particular, there exists some

unirational point x and the assertion follows since σx is exhaustive. �

The orbit algebras R = Π(L, σx), where σx is exhaustive and where R is com-

mutative, are described (in case char k �= 2) in Theorem 4.2.1. From this we get the

explicit form of the function fields as in Theorem 4.3.1. This explicit description fol-

lows again from the next theorem which provides also the proof for the implication

(3)⇒(1) in Theorem 4.3.1.

Theorem 4.3.5. Let X be homogeneous. Assume that for all rational points
x ∈ X we have e(x) = 1. Then for each rational point x the orbit algebra Π(L, σx)

is commutative.

Moreover, if ε = 1, then there is a finite field extension K/k such that
Π(L, σx) � K[X, Y ], where X and Y are central variables of degree one. If ε = 2

and char(k) �= 2, then there is a finite field extension K/k such that Π(L, σx) �
K[X, Y, Z]/(−aX2 − bY 2 + abZ2), with a, b ∈ K∗ such that −aX2 − bY 2 + abZ2 is
an anisotropic quadratic form over K.

Proof. There is a rational point x. By assumption x is unirational. Thus the

associated tubular shift σx is efficient and the orbit algebra R = Π(L, σx) graded

factorial. We have R = R0〈R1〉 and [R1 : R0] = ε+1. Moreover, [Rn : R0] = εn+1.

(Note that by Corollary 0.6.2 in case ε = 1 the underlying tame bimodule M is

non-simple.)

Fact: Let u be a non-zero element of R, homogeneous of degree one. Then u
is prime.

Namely, u is irreducible, hence by 1.3.3 a divisor of some prime element π,

which because of deg(u) = 1 is associated to a rational, hence multiplicity free

point. It follows from 1.6.5 that u equals π up to some unit and hence is prime

itself.

It follows that there are rational points y (and z) such that the prime elements

πx, πy (and πz) are linearly independent over R0 and R = R0〈πx, πy〉 (in case ε = 1)

or R = R0〈πx, πy, πz〉 (in case ε = 2). Moreover, by 1.7.1 the prime πx is central.

We have to show

(a) R0 is commutative;

(b) πy (and πz) commutes with each element from R0;

(c) πyπz = πzπy (in case ε = 2).
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We only discuss the case ε = 2 since the arguments for the case ε = 1 are

similar and even easier. Since πy and πz are prime there is a unit α ∈ R∗
0 such that

πyπz = απzπy (by 1.6.2). By the Fact above, πx +πy is prime, therefore commutes

with the prime πz up to a unit, and α = 1 follows. Let f ∈ R0, f �= 0. For a ∈ R0,

again by using the Fact above and considering the product (πx + aπy)f it follows

that fa = aγy(f), where γy is the automorphism induced by the normal element

πy. In particular, for a = 1 we get γy(f) = f . It follows that R0 is commutative

and that πy is central. Similarly, πz is central. Thus, R is commutative.

With K = R0 we get R � K[X, Y ] in case ε = 1 and R � K[X, Y, Z]/Q, where

Q is a homogeneous quadratic polynomial, in case ε = 2. Assume char(k) �= 2.

Then by factoriality Q is anisotropic over K and hence can be assumed to be of the

form stated in the theorem. It follows also that the bimodule M is given as stated

in Theorem 4.2.1. �
From this, Theorem 4.3.1 follows immediately since k(X) is the quotient division

ring (of fractions of homogeneous elements of the same degree) of Π(L, σx).

Lemma 4.3.6. Let X be homogeneous and x ∈ X a rational point. Then

e(x) ≤ ε · [End(L) : k].

Proof. Since x is rational we have [Ext1(S, L) : k] = ε · [End(L) : k], hence

e(x) =
[Ext1(S, L) : k]

[End(S) : k]
=

ε · [End(L) : k]

[End(S) : k]
≤ ε · [End(L) : k].

�
Note that the curve may be defined over a field which is larger than k (for ex-

ample, over the centre of the corresponding bimodule algebra) and that the formula

also holds with this larger field instead of k.

Example 4.3.7. Let M be the Q-Q(
√

2,
√

3)-bimodule Q(
√

2,
√

3). Let x be a

unirational point and R = Π(L, σx). By 1.7.12

R = Q〈X, Y, Z〉/(XY − Y X, XZ − ZX, Y Z + ZY, Z2 + 2Y 2 − 3X2).

Since this algebra is not commutative it follows from Theorem 4.3.5 that there

is a rational point of multiplicity greater than one. We determine such a point

explicitly. Denote the images of X, Y and Z by x, y and z, respectively. Then x is

central, y and z are normal (but not central). The element u = x− y is irreducible

but not normal, hence not prime. But u is divisor of a prime π = πp. Then p is a

rational point with e(p) > 1.

More precisely, (up to multiplication with a unit in Q∗) we have π = x2 −
y2: In fact, by the preceding lemma we have e(p) = 2, hence deg(π) = 2. By

Proposition 1.3.3 there is v ∈ R (of degree 1) such that vu = π. Moreover, x2 −
y2 = (x − y) · (x + y) lies in the centre of R. (Note that it follows easily from

z(x−y) = (x+y)z that x−y and x+y induce isomorphic simple cokernels.) Then

v(x2 − y2) = vu(x + y) = π(x + y). Since π is prime, it follows that π divides

x2 − y2, and since both have the same degree they are associated.

Corollary 4.3.8. Let X be homogeneous and R = Π(L, σ) with σ efficient.
The following are equivalent:

(1) k(X) is commutative.
(2) R is commutative.
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(2’) R is almost commutative.
(3) For each homogeneous prime ideal P in R of height one the localization R0

P

is a local (equivalently, a semiperfect) ring.

Proof. Recall Proposition 4.2.2 and Proposition 2.2.15. �
Problem 4.3.9. Let X be a homogeneous exceptional curve. Is the category

H = coh(X) uniquely determined (up to equivalence) by the function field k(X)?

This is only clear for commutative function fields.

In the context of this section Problem 2.3.10 becomes interesting again:

Problem 4.3.10. Find a formula for the skewness s(X) in terms of the mul-

tiplicity function e. From such a formula Theorem 4.3.1 should be derived as a

special case.

Remark 4.3.11. In case s(X) = 2 the existence of a rational point x such that

e(x) = s(X) follows directly from Theorem 4.3.1.

Remark 4.3.12. The function field and the multiplicities are also related by a

fundamental exact sequence. For this sequence one has to consider the Grothendieck

category Qcoh(X) =
ModZ(R)

ModZ

0(R)
, the quotient category modulo the Serre subcategory

formed by the Z-graded torsion modules.

The injective hull Q of the line bundle L is a generic sheaf (corresponding to

the generic Λ-module, where Λ is the associated bimodule algebra). Moreover, Q
is the injective hull of each line bundle and the endomorphism ring End(Q) is the

function field k(X). (Compare [56, Lemma 14].)

For each x ∈ X denote by Sω
x the Prüfer sheaf, which is the direct limit of all

S
(n)
x (the indecomposable sheaf of length n concentrated in x).

There is the short exact sequence in Qcoh(X)

0 −→ L −→ Q −→
⊕
x∈X

⊕
e(x)

Sω
x −→ 0

involving the multiplicities e(x). This sequence already appeared in [90, Prop. 5.2].



CHAPTER 5

Automorphism groups

Knowledge of the automorphism group of a curve contributes enormously to a

better understanding of the geometry. This chapter is devoted to the determination

of automorphism groups. By the mechanism of insertion of weights this problem

will be reduced essentially to the homogeneous case (see Section 6.3), which we

treat now.

The group Aut(H) consists essentially of Pic(X) and Aut(X), where the latter

group is given by the geometric automorphisms and the ghosts. Over an alge-

braically closed field the Picard group is just Z, but this does not hold in general,

as will be shown in Theorem 5.4.1. So far, the best theorem on the structure of

Pic(X) we have is Theorem 3.2.8, which also gives a hint as to what ghosts look

like.

In Proposition 5.1.4 we prove that Aut(X) is isomorphic to the factor group of

the automorphism group of the underlying bimodule M modulo the inner bimod-

ule automorphisms, which is useful for explicit calculations. Sections 5.3 and 5.4

constitute the main part of this chapter, where we analyse the case of a non-simple

bimodule M . In this case it is easy to desribe the graded factorial coordinate alge-

bra explicitly, which will be helpful in the determination of Aut(X). This graded

algebra is of the form

F [X; Y, α, δ],

where F is a finite-dimensional skew field, X is a central variable, α ∈ Aut(F/k)

and δ : F −→ F is a (α, 1)-derivation such that for all f ∈ F the following relation

holds

Y f = δ(f)X + α(f)Y.

We concentrate on the case δ = 0, thus R = F [X; Y, α] is a graded twisted

polynomial algebra. If r is the order of α modulo inner automorphisms, then α
induces a ghost automorphism α∗ of order r. In the special case where α induces a

generator of the Galois group Gal(Z/k) (with Z being the centre of F ) we determine

Aut(X) explicitly. Our knowledge of the prime spectrum of R can be used to

distinguish ghosts from geometric automorphisms.

As an application we get a formula for the Auslander-Reiten translation. One

might expect that τ is given by degree shift by −2, that is, by σ−2
x . While this is

true on objects, it can fail on morphisms; the correct formula is

τ = σ−1
x ◦ σ−1

y = σ−2
x ◦ α−1

∗ .

We will treat also the quaternion case. Over the real numbers this is the case

when M = RHH, where H is the skew field of quaternions over R. Together with

our results on the non-simple bimodules we describe the homogeneous exceptional

curves explicitly when k = R, the field of real numbers. It turns out that such

a curve over R can be identified with a quotient of the Riemann sphere modulo

75
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an involution, possibly equipped with additional structure, and that the geometric

automorphism group is just the group of directly conformal homeomorphisms on

the Riemann sphere compatible with the involution and respecting the additional

structure.

We conclude the chapter by exhibiting an interesting homogeneous exceptional

curve over k = Q whose automorphism group is isomorphic to the Klein four group.

5.1. The automorphism group of a homogeneous curve

Now we treat the automorphism group in the homogeneous case. We will see,

that calculations of the automorphism group will lead us into (noncommutative)

Galois theory.

5.1.1 (Bimodule automorphisms). Let M = F MG be a bimodule over the skew

fields F and G, k acting centrally, with all data finite dimensional over k. We

always assume M �= 0. Define the group Aut(M) = Autk(F MG) to be the set of

all triples (ϕF , ϕM , ϕG), where ϕF ∈ Aut(F/k), ϕG ∈ Aut(G/k), ϕM : M −→ M
is k-linear and bijective, and for all f ∈ F , g ∈ G and m ∈ M we have

ϕM (fmg) = ϕF (f)ϕM (m)ϕG(g).

Composition and inverse are built componentwise, the neutral element is given by

(1F , 1M , 1G). Note that projection onto the middle component, (ϕF , ϕM , ϕG) �→
ϕM is injective. There is an alternative description: Consider the k-category con-

sisting of two objects with endomorphism ring F and G, respectively, and with

non-zero Hom-space only in one direction, which is given by M . Then an automor-

phism of the bimodule M is just an autoequivalence of this category.

5.1.2 (Inner automorphisms). An element (ϕF , ϕM , ϕG) ∈ Aut(M) is called

inner, if there are f ∈ F ∗, g ∈ G∗ such that for all x ∈ F , y ∈ G, m ∈ M we

have ϕF (x) = f−1xf , ϕG(y) = g−1yg and ϕM (m) = f−1mg. The subgroup of

all inner automorphisms is denoted by Inn(M) = Innk(F MG), the factor group by

Out(M) = Outk(F MG) = Aut(M)/ Inn(M).

5.1.3. Each element (ϕF , ϕM , ϕG) ∈ Aut(M) defines a k-algebra automorphism

on the hereditary algebra Λ :=

(
G 0

M F

)
in the obvious way, and conversely; then,

the triple is inner if and only if the induced k-algebra automorphism is inner.

Proposition 5.1.4. Let X be a homogeneous exceptional curve with underlying
tame bimodule M = F MG. Then

Aut(X) � Out(M).

Proof. Denote by L the indecomposable bundle such that there is an irre-

ducible map from L to L as in 1.1.2. Then M = Hom(L, L). Let ϕ be an autoequiv-

alence of H = coh X fixing the structure sheaf L. Then ϕ also fixes L. Therefore, by

restriction ϕ induces an autoequivalence of the full subcategory {L, L}, hence an

element of Aut(M). Moreover, with a theorem of Eilenberg and Watts [8, II.2.3],

the functor ϕ is isomorphic to the identity on H if and only if its restriction is iso-

morphic to the identity on {L, L}, that is, if and only if the induced automorphism

on the bimodule is inner.

Conversely, any element φ in Aut(M) induces an automorphism φ of the bi-

module algebra Λ. This induces an autoequivalence φ∗ of mod(Λ) by sending a
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right Λ-module N to Nφ−1 (observe the −1 here, ensuring that the assignment

φ �→ φ∗ is covariant). This induces an autoequivalence of the triangulated category

Db(Λ), and since Db(Λ) = Db(X) this finally induces an autoequivalence (which

we also denote by φ∗) of H. Now φ∗ fixes L since it is easy to see that the cor-

responding indecomposable summand of Λ is preserved under the automorphism

φ : Λ −→ Λ. Moreover, φ is inner if and only if φ∗ on mod(Λ) is isomorphic to the

identity (compare [8, II.5]). These constructions are mutually inverse. �
Remark 5.1.5. Let M = F MG be a tame bimodule over k. Denote by K its

centre (compare 0.5.5). Clearly, AutK(M) ⊂ Autk(M) and InnK(M) = Innk(M).

Moreover, there is an exact sequence

1 −→ AutK(M) −→ Autk(M)
ρ−→ Gal(K/k),

where ρ is defined by restricting ϕF and ϕG to K. It follows that the factor group

Autk(X)/ AutK(X) can be embedded into Gal(K/k).

5.2. The structure of Aut(H)

5.2.1 (Orbit cases IIIa and IIIb). Let X be a homogeneous exceptional curve

with hereditary category H. We would like to analyse the structure of Aut(H). In

order to do this we have to refine the definition of orbit case III. By definition of

this case there is no σ ∈ Aut0(H) with σ(L) = L (see 1.1.5). But is it possible

that there is a σ ∈ Aut(H) with this property? If there is such an automorphism,

we call this case orbit case IIIb, if not, we call it case IIIa. In other words, in

case IIIa each efficient automorphism is transitive. Of course, if in case III the

endomorphism skew fields of line bundles in two different Auslander-Reiten orbits

are non-isomorphic, then we are in case IIIa.

Problem 5.2.2. Is orbit case IIIb non-empty, that is, does there exist a tame

bimodule over some field belonging to this case?

Recall that O is the Aut(H)-orbit and O0 is the Aut0(H)-orbit of L. Note that

only in orbit case IIIb there is a difference between O and O0. Obviously, in any

orbit case there exists a transitive automorphism: in case IIIb by definition, in all

other cases there is even a point fixing one.

Fix a transitive σ ∈ Aut(H) (which is unique up to an automorphism of X).

Let φ ∈ Aut(H). Then there is a (unique) n ∈ Z such that σn(φ(L)) � L, that is,

σn ◦ φ ∈ Aut(X). In other words, each φ ∈ Aut(H) is a composition of a power of

σ and some element of Aut(X). Therefore, Aut(H) consists of the following types

of automorphisms:

• the geometric automorphisms of the curve

• the tubular shifts

• the ghosts

• one transitive automorphism (if not already in the Picard group).

As usual, denote by G the ghost group of X. Recall that Pic0(X) = Pic(X) ∩
Aut(X), which is Pic(X) ∩ G.

Proposition 5.2.3. Let X be a homogeneous exceptional curve. Assume, that
there is an exhaustive automorphism σ lying in Pic(X), and assume that we are not
in orbit case IIIb. Then there are split exact sequences of groups

1 −→ Pic(X)/ Pic0(X) −→ Aut(H)/G −→ Aut(X)/G −→ 1,
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where Pic(X)/ Pic0(X) � Z with generator induced by σ, and

1 −→ 〈σ〉 −→ Aut0(H) −→ G −→ 1.

Moreover, Aut(H)/ Aut0(H) � Aut(X)/G.

Proof. Since we exclude orbit case IIIb, σ is transitive. Denote the class of

an automorphism φ modulo G by [φ]. It is easy to see that [φ] �→ [σn ◦ φ], where

σn(φ(L)) � L, is a well-defined homomorphism Aut(H)/G −→ Aut(X)/G admitting

a section and having kernel Pic(X)/ Pic0(X). For the second sequence note, that

for φ ∈ Aut0(H) and any point x we have φ ◦ σx ◦ φ−1 = σx, hence φ ◦ σ ◦ φ−1 = σ,

thus the map φ �→ σn ◦ φ such that σn(φ(L)) � L is a homomorphism. The final

assertion is clear by considering the map Aut(X)/G −→ Aut(H)/ Aut0(H), which

is induced by the inclusion. �

Proposition 5.2.3 will be extended to weighted curves in Proposition 6.3.4.

5.3. The twisted polynomial case

We now discuss the case, where the underlying bimodule is non-simple, more-

over of the form M(F, α). That is, we assume that the derivation δ is trivial. In

the special case where the automorphism α ∈ Aut(F/k) is a generator of the Galois

group of the centre Z/k we determine the automorphism group Aut(X) completely.

It follows in particular that α induces a generator of the ghost group. In the next

section we will deduce a formula for the Auslander-Reiten translation.

5.3.1. Let M = M(F, α). Recall that Π(L, σ) � F [X; Y, α], where X is central.

Let x and y be the points corresponding to the prime ideals generated by X and

Y , respectively, and let σx and σy be the associated tubular shifts.

Modulo inner automorphisms α has finite order r. There is some u ∈ Fix(α)∗

such that αr(f) = u−1fu for all f ∈ F . Recall that for an element f ∈ F the norm

of f is given by N(f) = αr−1(f) · · ·α(f)f .

Denote by Gal(F/k) the factor group Aut(F/k)/ Inn(F/k). By the Skolem-

Noether theorem [30], restriction to the centre Z = Z(F ) induces a monomorphism

Gal(F/k) ⊂ Gal(Z/k). Note that if k is the field of real numbers or a finite field

(hence F commutative), then Gal(F/k) is cyclic.

5.3.2. The automorphism α ∈ Aut(F/k) induces an automorphism of the bi-

module M , given by (f, g) �→ (α(f), α(g)), which we denote also by α. Denote by

α∗ ∈ Aut(X) the induced automorphism of the curve, as described in the proof

of 5.1.4.

Let γ be the graded algebra automorphism of R = F [X; Y, α] given by rY =

Y γ(r) for all r ∈ R. Then α∗ coincides with (γ−1)∗ = γ∗ (as defined in 3.2.1). In

fact, it is easy to see that these automorphisms coincide on the full subcategory

{L, L = L(1)}, and by the argument given in the proof of Proposition 5.1.4 they

coincide also on H.

From the description of the prime elements in 1.7.7 the next lemma follows

immediately:

Lemma 5.3.3. α induces a prime fixing automorphism of R. Accordingly α∗ is
a ghost of order r. �

For the automorphism group we treat a special, cyclic Galois case.
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Theorem 5.3.4. Let Z be the centre of F and α ∈ Aut(F/k) such that its
image in Gal(F/k) generates the group Gal(Z/k) of order r.

(1) Let r = 1. Then Aut(X) is canonically isomorphic to PGL2(Z).
(2) Let r ≥ 2. Then Aut(X) is generated by

• the automorphism α∗ induced by α, which generates the ghost group G and
is of order r;

• transformations of the form Y �→ aY for a ∈ Z∗; they are liftable to R;
two transformations Y �→ aY and Y �→ bY (with a, b ∈ Z∗) give the same
automorphism on X if and only if N(a) = N(b);

• if r = 2 additionally by the (non-liftable1) automorphism exchanging X
for uY (and Y for u−1X).

Proof. We assume r ≥ 2, since the case r = 1 is easy. Let M be the un-

derlying bimodule as described above. By 5.1.4, Aut(X) is given by Out(M) =

Aut(M)/ Inn(M). Elements of Aut(M) are given by triples (ϕ1, ϕM , ϕ2) with

ϕ1, ϕ2 ∈ Aut(F/k) and ϕM ∈ Endk(M) bijective such that ϕM (f1mf2) =

ϕ1(f1)ϕM (m)ϕ2(f2) for all f1, f2 ∈ F and m ∈ M . Note that modulo inner

bimodule automorphisms we can assume that ϕ1 and ϕ2 are powers of α. Re-

call that there is the automorphism induced by α, given as (α, α, α), where on

F M = F ⊕F it is given by α(x, y) = (α(x), α(y)). By abuse of notation, we denote

this automorphism of M by the same letter α. We have αr
∗ = 1. Note that in case

ϕ1 = 1, ϕM is given by an invertible matrix,

ϕM (x, y) = (x, y) ·
(

a b
c d

)
with a, b, c, d ∈ F such that ad−bc �= 0. Calculating ϕM ((1, 0)·f) and ϕM ((0, 1)·f)

for all f ∈ F , one gets in case ϕ2 = 1 that the matrix is diagonal with entries lying in

Z∗ (exploit the existence of f ∈ Z such that α(f) �= f). Similarly, an automorphism

of the form (1, ϕM , αj) with 1 ≤ j ≤ r − 1 is only possible for r = 2 and j = 1,

which leads to the matrices of the form

(
0 a
b 0

)
with a, b ∈ Z∗ (using f ∈ Z

such that αj(f) �= f). Moreover, a diagonal matrix is inner if and only if it is of

the form

(
ab 0

0 aα(b)

)
with a, b in Z∗. The norm N induces a map, assigning a

diagonal matrix

(
a 0

0 b

)
the value N(a−1b), and, involving Hilbert’s Theorem 90

(applied to the cyclic Galois extension Z/K where K = Z ∩Fix(α), see [63]), such

a matrix is mapped to the identity if and only if it is of the above diagonal form

with twist. Moreover, up to inner automorphisms we can assume a = 1, hence

we have a transformation Y �→ bY . Since (bY )f = α(f)(bY ) for all f ∈ F , this

transformation extends to a graded k-algebra automorphism of R = F [X; Y, α],

mapping XiY j to Nj(b)X
iY j . Moreover, for N(b) �= 1 this induces a geometric

element in Aut(X): otherwise it would be prime fixing, in particular it would fix

the prime element Xr + uY r, and then N(b) = Nr(b) = 1 would follow. �

Remark 5.3.5. (1) With the assumptions and notations of the theorem let

r ≥ 2 and K = Z ∩ Fix(α). Let U be the subgroup of Z∗ of elements a with

1This automorphism is induced by the canonical isomorphisms of graded algebras Π(L, σx) �
F [X; Y, α] � F [uY ; X, α−1] � Π(L, σy).
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N(a) = 1. Then

Aut(X) �
{

(Z∗/U � Z2) � 〈α∗〉 r = 2;

Z∗/U � 〈α∗〉 r > 2;

where G = 〈α∗〉 is the cyclic ghost group of order r. Let K+ = N(Z∗) ⊂ K∗. Then

N induces an isomorphism of groups Z∗/U � K+. But note that the action of K+

on X is not given explicitly.

(2) In case r = 2, even though X is central in R and Y is not, the localizations

R0
(X) and R0

(Y ) are isomorphic (by mapping XY −1 to uY X−1). (Compare 2.2.5.)

Examples 5.3.6. (1) The theorem can be applied for k = R to the bimodules

M = R ⊕ R and M = H ⊕ H with α = 1 and r = 1. Also, all (2, 2)-bimodules over

finite fields are captured by the theorem.

(2) Let k = R and M = C ⊕ C, where C acts on the right hand side on the

second component via complex conjugation α. Then r = 2, and the elements of

Aut(X) are given by Y �→ rY (r > 0), by “inversion” X ↔ Y and by the ghost α∗.
(3) Let k = Q(i) and F = k(

4
√

2), let α be the automorphism
4
√

2 �→ i 4
√

2

and let M = M(F, α). Then Aut(X) consists of the ghost α∗ of order 4 and

the automorphisms Y �→ aY (a ∈ F ∗). Here an element a ∈ F ∗ cannot always

be represented (modulo the group U of elements of norm 1) by an element in

Fix(α) = Q(i). For example, N(
4
√

2) = −2 cannot coincide with the norm of an

element in Q(i)∗.

5.4. On the Auslander-Reiten translation as functor

We continue to study the non-simple bimodule case where we still assume that

for the derivation we have δ = 0. Hence the orbit algebra is of the form F [X; Y, α].

As before, let x and y be the points corresponding to the prime elements X and Y ,

respectively.

Theorem 5.4.1. Let R = Π(L, σx) = F [X; Y, α] with α ∈ Aut(F/k). Let r be
the order of α modulo inner automorphisms. Then

(1) As elements of AutH, σ−1
x ◦ σy = α∗.

(2) Pic(X) = 〈σx, σy〉 � Z × Zr and Pic0(X) = 〈α∗〉 � Zr.
(3) The Auslander-Reiten translation τ acts on elements of End(L) like σ−1

x ◦
σ−1

y .

Proof. (1) Let γ be the automorphism of the graded algebra R given by

rπy = πyγ(r) (which coincides on R0 with α−1). Then by definition, γ∗ = α∗, and

the formula follows from 3.2.8.

(2) As before, let u ∈ Fix(α)∗ such that αr(f) = u−1fu for all f ∈ F . Then,

πx ∈ R is central, πy is normal such that uπr
y is central, and every other prime

element in R is central. Moreover by (1), for 1 ≤ j ≤ r − 1, the automorphisms

σj
y differ from the powers of σx. Hence Pic(X) = 〈σx, σy〉 � Z × Zr follows from

Corollary 3.2.9. Moreover, Pic0(X) is generated by σ−1
x ◦ σy = α∗.
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(3) Let m be the homogeneous Jacobson radical of the graded local ring R.

From the diagram of the Koszul complex (see 2.1.8)

0 R(−2)
(Y · (−X)·)t

g

R(−1) ⊕ R(−1)
(X· Y ·)

0
@a b

c d

1
A

R

f

R/m

0 R(−2)
(Y · (−X)·)t

R(−1) ⊕ R(−1)
(X· Y ·)

R R/m

it follows that b = 0 = c, a = f(−1), d = α−1(f)(−1), and g = α−1(f)(−2). By

sheafification we get for any f ∈ End(L) a diagram of almost split sequences

µ : 0 τL = L(−2)

σ−2
x α−1(f)

L(−1) ⊕ L(−1) L

f

0

µ : 0 τL = L(−2) L(−1) ⊕ L(−1) L 0.

It follows that (on classes) σ−2
x α−1(f) ·µ = µ ·f , for any f ∈ End(L). On the other

hand, as can be derived from [75, Lemma 3], τ (f) ·µ = µ ·f , and τ (f) = σ−2
x α−1(f)

follows. Now apply (1). �
Let Sx and Sy be the simple objects associated to πx and πy, respectively.

Mapping f ∈ End(L) to its fibre map fx induces an isomorphism End(Sx) �
End(L) = F , and similarly for Sy. Then the following is easy to see.

Corollary 5.4.2. On elements of End(Sx) and End(Sy) the Auslander-Reiten
translation τ acts like α and α−1 ∈ Aut(F/k), respectively. �

Corollary 5.4.3. On the tube Ux (Uy) the tubular shift σx (σy) coincides with
α∗ (α∗, respectively) and hence does not coincide, in case r ≥ 2, with the identity
functor on this tube. �

Corollary 5.4.4. Assume, that the powers of α∗ are the only ghosts (which
is true, for example, under the assumptions of Theorem 5.3.4). Then as elements
in Aut(H),

τ = σ−1
x ◦ σ−1

y = σ−2
x ◦ α∗.

In particular, τ ∈ Pic(X).

Proof. On objects τ acts like σ−2
x , thus σ2

x ◦ τ is a ghost, which must be α−1
∗

by the theorem and the assumption. �
Because of the identity τ = σ−1

x ◦ σ−1
y the following is immediate:

Corollary 5.4.5. τ is the identity functor on the length categories Uz for
every point z �= x, y. �

Problem 5.4.6. Is τ ∈ Pic(X) true for any exceptional curve? Does the equa-

tion τ = σ−1
x ◦ σ−1

y hold under the weaker assumptions of the preceding theorem?

Find a general functorial formula for τ .

Problem 5.4.7. Extend the results of this and the preceding section to arbi-

trary non-simple bimodules, that is, to arbitrary α ∈ Aut(F/k) and to the case

where δ �= 0. What can be said in case of a simple bimodule?
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5.5. The quaternion case

Let k be a field of characteristic different from two. Let a, b ∈ k∗ and let

F =
(

a, b
k

)
be an algebra of quaternions over k, that is, a k-algebra on generators i

and j subject to the relations

ji = −ij, i2 = a, j2 = b.

Moreover, we assume that F is a skew field. Let M be the bimodule kFF . Let

F0 = ki⊕ kj⊕ kji be the quadratic space of pure quaternions, where the quadratic

form is given by the restricted norm form q = −aX2 − bY 2 + abZ2. Let SO(F0) be

the group of all isometries of this quadratic space with determinant 1 (see [61]).

Proposition 5.5.1. Let X be a homogeneous exceptional curve, where the un-
derlying bimodule is given as above. We have an isomorphism Aut(X) � SO(F0)

which induces the canonical action of SO(F0) on the projective spectrum of the co-
ordinate algebra R = k[X, Y, Z]/(−aX2 − bY 2 + abZ2). Each automorphism of X
is geometric.

Proof. We exhibit the proof which is given in [58] for k = R. We have to

calculate the (outer) automorphisms of the bimodule M . For each a ∈ F ∗ denote

by ιa : F −→ F the inner automorphism given by ιa(f) = a−1fa for all f ∈ F .

Each ϕ ∈ Aut(M) has the form ϕ = (1, ϕ, ιa), where ϕ(f) = ϕ(1)a−1fa. We obtain

a surjection F ∗� F ∗ −→ Aut(M) with kernel 1 � k∗, hence Aut(M) � F ∗� F ∗/k∗.
Since every inner automorphism of the bimodule M is of the form x �→ α−1xa
for some α ∈ k∗, a ∈ F ∗, there is a surjection k∗ � F ∗ −→ Inn(M) inducing an

isomorphism Inn(F ) � k∗ � F ∗/k∗. Hence Out(M) � F ∗/k∗ � SO(F0) (see [61]).

By the correspondence between the basis i, j, k = ji of F0 and the elements x, y, z
in R (as described in [54, 4.3]), we see how an element of SO(F0) acts on (prime)

elements of degree one in R, and this action extends uniquely to an automorphism

of the graded k-algebra R. �

5.6. The homogeneous curves over the real numbers

In this section we apply and illustrate our results on the automorphism group

in the special situations where k = R is the field of real numbers. There are

(up to duality) only five tame bimodules, which are listed in the following table.

The corresponding graded factorial coordinate algebras and automorphism groups

Aut(X) were determined in the preceding sections. In the table, γ denotes complex

conjugation, I the inversion z �→ 1/z (explained below). Note that in the “classical”

case C ⊕ C complex conjugation occurs, since we consider it as bimodule over R.

Moreover, in this case complex conjugation induces a geometric automorphism.

M R = Π(L, σx) Aut(X)

1. RHH R[X, Y, Z]/(X2 + Y 2 + Z2) SO3(R)

2. RRR ⊕ RRR R[X, Y ] PGL2(R)

3. CCC ⊕ CCC C[X, Y ] PGL2(C) � 〈γ∗〉
4. HHH ⊕ HHH H[X, Y ], X, Y central PGL2(R)

5. CCC ⊕ CCC C[X, Y ], X central, Y z = zY (R+ � 〈I∗〉) � 〈γ∗〉
Table 5.1. The real homogeneous curves
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5.6.1. Let R = Π(L, σ), where σ is an efficient automorphism. The points of

X are the prime elements in R. In each of the five cases we list the prime elements

(up to units), the endomorphism skew fields of the corresponding simple objects Sx

and the symbol data

„
d(x)
f(x)

«
. We call a point x ∈ X real (complex, quaternion) if

the endomorphism ring of Sx is R (C, H, respectively). We call the property of x
being real, complex or quaternion, respectively, also the colouring of x.

(1) R[X, Y, Z]/(X2 + Y 2 + Z2) = R[x, y, z].

• ax + by + cz, (a, b, c) �= (0, 0, 0); C;
„

1
1

«
Hence X can be identified with S2/ ± 1, the 2-sphere modulo antipodal

points. This is homeomorphic to P1(C)/Z2, the Riemann sphere modulo

the fixed-point free involution (given by z �→ −1/z̄ on P1(C)). There are

no real points.

(2) R[X, Y ].

• X, Y + αX α ∈ R; R;
„

1
1

«
.

• (Y + zX)(Y + z̄X) z ∈ C \ R; C;

„
2
2

«
.

Hence X = P1(C)/Z2 (identifying X, Y + αX, (Y + zX)(Y + z̄X)

with the class of ∞, α, z, respectively) where here Z2 is generated by the

involution (given by z �→ z̄) having fixed points ( = real points). We have

two regions, the boundary (= real points) having symbol data

„
1
1

«
and

the inner points are complex having symbol data
„

2
2

«
.

(3) C[X, Y ].

• X, Y + zX z ∈ C; C;
„

1
1

«
.

Here, X = P1(C), the Riemann sphere.

(4) H[X, Y ].

• X, Y + αX α ∈ R; H;

„
1
1

«
.

• (Y + zX)(Y + z̄X) z ∈ C \ R; C;
„

2
1

«
.

Here X = P1(C)/Z2 (as in case (2)), but the boundary is coloured quater-

nion.

(5) C[X, Y ].

• X, Y ; C;

„
1
1

«

• Y 2 − αX2 = (Y −
√

αX)(Y +
√

αX) 0 < α ∈ R; R;

„
2
1

«

• Y 2 − αX2 0 > α ∈ R; H;
„

2
2

«

• (Y 2 − zX2)(Y 2 − z̄X2) z ∈ C \ R; C;
„

4
2

«
.

In this case, the points of X are in ono-to-one correspondence with the

elements of P1(C)/Z2 (mapping X, Y , Y 2 − αX2 (0 �= α ∈ R), (Y 2 −
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zX2)(Y 2 − z̄X2) (z ∈ C \ R) to the class of ∞, 0, α, z in P1(C)/Z2,

respectively). The boundary is coloured in a more complicated fashion as

in the preceding cases and is indicated in Figure 5.1.

C

C

H R

Figure 5.1

Thus, in each of the five cases X can be identified with the Riemann sphere

P1(C) or a quotient of it modulo some involution plus some additional structure.

Non-boundary points are always complex.

Proposition 5.6.2 ([58]). Let X be a homogeneous exceptional curve over
k = R. The geometric automorphism group of X is canonically isomorphic to the
group of directly conformal homeomorphisms on the Riemann sphere respecting the
involution and the colouring.

Proof. The geometric elements of Aut(X) for all real cases are explicitly de-

scribed in 5.3.4 and 5.5.1 as certain invertible 2× 2-matrices. Thus these elements

act in a natural way as Möbius transformations on the Riemann sphere, which

induces a surjective homomorphism from Aut(X) to the group of conformal homeo-

morphisms respecting the involution and the colouring [46] (ghosts mapped to the

identity), which establishes the isomorphism as claimed. Moreover, having identi-

fied X with the Riemann sphere as above, this action coincides with the action of

Aut(X) on X, with the only exception that in case C[X, Y ] a transformation of the

form X �→ aX corresponds to the Möbius transformation z �→ a2z. �
In case k = R Proposition 5.2.3 reads as follows.

Proposition 5.6.3. Let X be a homogeneous exceptional curve over k = R.
Let G be the ghost group. Then the group Pic(X)/G acts simply transitive on the
set of all (isomorphism classes of ) line bundles and there is a split exact sequence
of groups

1 −→ Pic(X)/G −→ Aut(H)/G −→ Aut(X)/G −→ 1. �

The weighted version is given in 6.3.5. We restate Corollary 5.4.4:

Proposition 5.6.4. Let k = R. Only in case M = C ⊕C the ghost group G is
non-trivial. In this case G is generated by the automorphism γ of order two induced
by complex conjugation. Let x and y be the unirational points. Then

τ = σ−1
x ◦ σ−1

y = σ−2
x ◦ γ. �
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5.7. Homogeneous curves with finite automorphism group

Over a finite field the automorphism group of a homogeneous curve X is finite

(by 5.1.4). But also in characteristic zero the automorphism group of a homoge-

neous curve may be finite.

Example 5.7.1. Let F/k be commutative with [F : k] = 4 and M = kFF .

Then it is easy to see that Out(M) � Gal(F/k).

Example 5.7.2. Let M be the Q-Q(
√

2,
√

3)-bimodule Q(
√

2,
√

3). With the

notations as in 4.3.7, the elements y and z in R = Π(L, σx) are not central up to a

unit, hence define (non-trivial) ghosts of order 2 (by 3.2.4). In fact they generate

Aut(X) which is isomorphic to the Klein four group V4. Each automorphism of X
(except the identity) is a ghost.

In the rest of this section we will elaborate a more complicated example which

we will meet again later when discussing a tubular curve of index three, see 8.3.1.

Example 5.7.3. Let k = Q and F =
(−1,−1

Q

)
be the skew field of quaternions

over Q on generators i, j with relations i2 = −1 = j2, ij = −ji, K = Q(
√
−3,

√
2)

and M be the bimodule K(K ⊕ K)F with the canonical K-action, and where the

F -action on M is defined by

(x, y) · i =
1√
−3

(
√

2x + y, x −
√

2y), (x, y) · j = (y,−x)

for all x, y ∈ K. Since K �� F , the bimodule M is simple. Let X be the homogeneous

exceptional curve over this bimodule.

Proposition 5.7.4. Aut(X) � V4, the Klein four group, and every automor-
phism is geometric. Moreover, there is a rational point x, which is fixed by all
automorphisms.

Proof. We have to calculate the (outer) automorphisms (γ, ϕ, δ) of the bi-

module M . Since every Q-automorphism of F is inner, modulo inner bimodule

automorphisms we can assume δ = 1F . Moreover, for γ we have the possibilities,

that γ is the identity, or γ = α, β or βα, where Gal(K/Q) = 〈α, β〉, with

α(
√

2) =
√

2

α(
√
−3) = −

√
−3

and
β(

√
2) = −

√
2

β(
√
−3) =

√
−3

.

For γ = 1K , using that ϕ((1, 0)i) = ϕ(1, 0)i and ϕ((1, 0)j) = ϕ(1, 0)j one imme-

diately gets, that ϕ is represented by a scalar matrix with non-zero entries in K,

and hence induces the identity modulo inner automorphisms. It is easy to see, that

modulo inner, the only automorphism with γ = α is (α, α̃, 1), where

α̃(x, y) = (α(x), α(y)) · j,
which is not inner since α �= 1. Namely, if (α, ϕ, 1) is an additional automorphism,

then (α, α̃, 1)◦ (α, ϕ, 1) = (1, α̃ϕ, 1). Moreover, (β, β̃, 1) is an automorphism, where

β̃(x, y) =

√
2√
−3

· (β(x), β(y)) · j +
1√
−3

· (β(x), β(y)),

and this is modulo inner the only automorphism with γ = β. Composing these two

automorphisms gives modulo inner the unique automorphism with γ = βα, and we

get the Klein four group.
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We have to show that each automorphism is geometric: For example, we have

α̃(
√

2,
√
−3) = −(

√
−3,

√
2), and a simple calculation shows, that there are no

a ∈ K∗, f ∈ F ∗ such that −(
√
−3,

√
2) = a(

√
2,
√
−3)f . Hence α̃ moves the point

associated to (
√

2,
√
−3).

Let m = (1, 1). Then α̃(m) = mj and β̃(m) = mi, hence α̃ and β̃ fix the point

associated to m (compare Lemma 0.6.3). �
Proposition 5.7.5. Let X be as above. Each rational point has multiplicity

2 or 4, and there are rational points in both cases. In particular, there exists an
efficient tubular shift σx.

Proof. By Lemma 0.6.1 the multiplicity of any rational point is 2 or 4. Let

m = (
√

2 +
√
−3 +

√
−6, 1) ∈ M . Then the intersection Km ∩ mF is of dimension

two over Q. (In fact, one calculates that the elements (a − 1
2b
√
−6) · m (with a,

b ∈ Q) lie in the intersection.) By Lemma 0.6.1 the corresponding point x has

multiplicity 2, and then the associated shift σx is efficient. Similarly, for m = (1, 1)

the intersection Km∩mF is of dimension one over Q, hence the multiplicity of the

corresponding point is 4. �
Remark 5.7.6. Let X be as before, and let x be a rational point. The preceding

proposition shows in particular that End(Sx) is commutative, and hence e∗(x) = 1.

Since there are infinitely many rational points (by [89]) we conclude from 2.3.5 that

s(X) = 4, and that there are only finitely many rational points x with e(x) = 2.
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The weighted case





CHAPTER 6

Insertion of weights

In this chapter we show how results for homogeneous curves can be extended to

weighted curves. We concentrate here on the graded factoriality and on the auto-

morphism groups. As a technical tool we will make use of the p-cycle construction

by Lenzing.

6.1. p-cycles

In this section we briefly describe the p-cycle construction by Lenzing [68].

It is related to the concept of a parabolic structure [103]. It follows from the

construction that each exceptional curve arises from a homogeneous exceptional

curve by insertion of weights into a finite number of points. This is, together with

its inverse process, the perpendicular calculus [35], the most important tool in order

to reduce problems to the homogeneous (=unweighted) case. We will consider the

following problems:

• construction of graded factorial coordinate algebras for H in the weighted

cases by describing an equivalent process of insertion of weights into prime

elements of the graded factorial algebras in the underlying homogeneous

cases (see 6.2.4).

• determination of the automorphism group Aut(X) and the Picard group

Pic(X) in the weighted cases (see 6.3.1 and 6.3.3).

6.1.1 (p-cycles in x). Let X be an exceptional curve with associated hereditary

category H. Let x ∈ X be a homogeneous point and p ≥ 2 be an integer (“weight”).

We use the natural transformation 1H
x−→ σx. A p-cycle (concentrated) in x is an

integer indexed sequence

E = (Ei, xi)i∈Z = [ · · · → E0
x0−→ E1

x1−→ E2 → · · · → Ep−1
xp−1−→ E0(x) → · · · ]

of morphisms Ei
xi−→ Ei+1 in H such that Ei+p = Ei(x) and xi+p = σx(xi) for all

i ∈ Z and each composition xi+p−1 ◦ xi+p−2 ◦ · · · ◦ xi coincides with the natural

morphism xEi
for all i ∈ Z. We write

E = [ E0
x0−→ E1

x1−→ E2 → · · · → Ep−1
xp−1−→ E0(x) ].

A morphisms f between p-cycles E = (Ei, xi) and F = (Fi, yi) in x consists of

morphisms fi : Ei −→ Fi such that fi+1 ◦xi = yi ◦fi and fi+p = fi(x) for all i ∈ Z.

The category of all p-cycles in x is denoted by H = H
(

p
x

)
and is easily seen

to be abelian and noetherian.

89
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6.1.2 (Inclusion). Let H = H
(

p
x

)
. There is the full exact embedding j : H −→

H given by

j(E) = [ E = E = E = · · · = E
xE−→ E(x) ]

We have a left adjoint  : H −→ H and a right adjoint r : H −→ H of j given by

(Ei, xi) = Ep−1 and r(Ei, xi) = E0.

6.1.3 (Simple objects). The simple objects in H are given (via the inclusion j)
by the simple objects in H concentrated in points y different from x, together with

the following p-cycles in x:

S1 = [ 0 → 0 → · · · → 0 → S → 0 ]

S2 = [ 0 → 0 → · · · → S → 0 → 0 ]

· · ·
Sp−1 = [ 0 → S → · · · → 0 → 0 → 0 ]

Sp = [ S → 0 → · · · → 0 → 0 → S(x) ]

where S ∈ H is simple and concentrated in x. The simple objects S1, . . . , Sp are

exceptional with End(Si) = End(S) and Ext1(Si+1, Si) �= 0.

Let L ∈ H be a special line bundle. Then j(L) ∈ H is also special, since

Hom(j(L), Si) �= 0 if and only if i = p.

6.1.4 (Reduction of weights/perpendicular calculus). Let S be the subset

{S2, . . . , Sp} of the simple objects concentrated in x except S1, and denote by

〈S〉 the extension closure of S in H. This forms a localizing Serre subcategory

in H, and the functor  : H −→ H induces an equivalence between the quotient

category H/〈S〉 and H.

The right perpendicular category S⊥ formed in H is equivalent to H.

6.1.5 (Tubular shifts). Let H be the category of p-cycles in x.

(1) On H the tubular shift σx associated to x corresponds to the natural trans-

formation 1H −→ σx, indicated by the following diagram

E = [ E0
x0

x0

E1

x1

· · · Ep−2
xp−2

xp−2

Ep−1
xp−1

xp−1

E0(x)

x0(x)

]

σxE = [ E1
x1

E2 · · · Ep−1
xp−1

E0(x)
x0(x)

E1(x) ]

(2) For every point y ∈ X the associated tubular shift σy : H −→ H extends

in an obvious way componentwise to an automorphism on H, again denoted by σy,

and which is for y �= x just the tubular shift on H associated to y ∈ X. It is clear

that the relations in Aut(H) between the σy (y ∈ X) are the same as in Aut(H).

Moreover, (σx)p = σx.

(3) More generally, each automorphism on H which is point fixing can be ex-

tended componentwise onto H (compare 0.4.8). In particular this holds for an

efficient automorphism σ defined on the sheaf category over the underlying homo-

geneous curve.

6.1.6 (Reduction to the homogeneous case). We say that H
(

p1, . . . , pt

x1, . . . , xt

)
(which

is defined inductively for pairwise different points x1, . . . , xt) arises by insertion of a
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finite number of weights from H. Let H be some abelian k-category. The following

are equivalent [68, Thm. 5.1]:

(1) H is equivalent to the hereditary category associated to an exceptional curve

X.

(2) H arises by insertion of a finite number of weights from the hereditary

category associated to a homogeneous exceptional curve.

6.2. Insertion of weights into central primes

We discuss the notion of insertion of weights on the level of the coordinate

algebra. We will extend Serre’s theorem to weighted situations, at least in special

cases. Generally it is not difficult to construct projective coordinate algebras in

the weighted cases, even if there exists no tilting object. In the case of an excep-

tional curve, with the theorem by Artin and Zhang [2, Thm. 4.5] and by using a

tilting bundle T , forming an orbit algebra with respect to T , the construction of a

projective coordinate algebra is easy.

Proposition 6.2.1. Let X be an arbitrary exceptional curve, and let T ∈ H+

be a tilting bundle. Let σx be the tubular shift at some point x ∈ X. Then the pair
(T, σx) is ample. Hence Π(T, σx) is a projective coordinate algebra for X.

Proof. The tilting bundle T defines the torsion class T = {X ∈ H |
Ext1(T, X) = 0}. By Serre duality, H0 ⊂ T . Thus, if F ∈ H, then by 0.4.6

and Serre duality we have F (n) ∈ T for sufficiently large n. Then F (n) is a quo-

tient of T s for some s > 0 (see [40]). This implies the first property of ampleness,

the second follows again with 0.4.6 and Serre duality. �

A different and more general construction of an ample pair is described in [88,

IV.4] (and [87, Appendix A]), which leads in our setting to an ample pair (L, σ),

where L is a (special) line bundle and σ is a composition of certain tubular shifts.

The projective coordinate algebras constructed in either of these two ways

are not practical for our considerations. We would like to preserve the graded

factoriality, starting from the homogeneous case.

6.2.2 (Insertion of weights into central primes). Let X be a homogeneous ex-

ceptional curve with sheaf category H and R = Π(L, σ) with σ efficient, which is

(positively) graded by the abelian group H (= Z). Let P = Rπ be a homogeneous

prime ideal of height one, where we assume that π is central and of degree d. (More

generally, R may be a k-algebra graded by an abelian group H, and π a central, ho-

mogeneous element.) Let p > 1 be a “weight”. Define R = R[π1/p] = R[T ]/(T p−π),

where T is a central variable. Denote H = H[d
p ] and by π ∈ R the image of T . Then

R is an H-graded algebra with deg(π) = h = d
p . If moreover (H,≤) is an ordered

abelian group (defined by the positive cone H+ = {h ∈ H | h ≥ 0}) such that R is

positively H-graded (Rh �= 0 only for h ≥ 0), then R is positively H-graded, where

the ordering on H is defined by the positive cone H+ = {h + nh | h ∈ H+, n ≥ 0}.
This can be iterated.

Example 6.2.3. Let p = (p1, . . . , pt) and d = (d1, . . . , dt) be sequences of

positive integers. Then the group Z
[

d1
p1

, . . . , dt

pt

]
is denoted by L(p,d). This is the

abelian group given by generators �x0, �x1, . . . , �xt and relations

pi�xi = di�x0, i = 1, . . . , t.
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If all di = 1, we write L(p) instead. Note that these groups can have a non-trivial

torsion part.

Let R = k[X1, X2] be the polynomial algebra graded by total degree. Let

λ1, . . . , λt be pairwise different elements in k ∪ {∞}. Without loss of generality

we assume λ1 = ∞ and λ2 = 0. Let πi ∈ R be the homogeneous prime element

X2 + λiX1 for i = 3, . . . , t and π1 = X1, π2 = X2. (In this case, all di = 1.)

Successive insertion of weights pi > 1 into the primes πi leads to the L(p)-graded

algebra

k[X1, X2, . . . , Xt]/(Xpi

i − Xp2
2 − λiX

p1
1 | i = 3, . . . , t),

which are just the projective coordinate algebras of the weighted projective lines

described in [34].

Theorem 6.2.4. Let π ∈ R be a central prime element and x ∈ X be the
associated point. Let p ≥ 2 be an integer.

(1) R = R[π1/p] is an H-graded factorial domain of Krull dimension two. More
precisely, the homogeneous prime ideals in R of height one are P = Rπ and P = Rq,
where q ∈ R is prime and not associated to π.

(2) There is an equivalence modH(R)

modH
0 (R)

� H
(

p
x

)
.

Proof. (1) We have an embedding R ⊂ R, and R can be considered also

as H-graded algebra. R = R[π] is a finite centralizing extension, since R = R ⊕
Rπ ⊕ · · · ⊕Rπp−1. Hence, the intersection of a homogeneous prime ideal in R with

R gives a homogeneous prime ideal in R, proper inclusion is preserved, and each

homogeneous prime ideal in R is of this form (see [77, 10.]). Consequently, R is of

graded Krull dimension two.

By the definition of the grading, every homogeneous element a ∈ R has the

form a = aπl, with a ∈ R homogeneous and 0 ≤ l ≤ p − 1. Hence, R is a graded

domain like R.

It is easy to see that πR ∩ R = πR, hence there is an isomorphism R/πR �
R/πR, and it follows, that π is a central prime element in R.

By the form of the homogeneous elements it follows easily that for a homoge-

neous prime ideal Rq ⊂ R different from Rπ, the ideal Rq is prime in R. Moreover,

since the map P �→ P ∩ R preserves proper inclusions, we see that every homoge-

neous prime ideal of height one in R different from Rπ is of the form Rq, where q
is prime in R and not associated to π.

(2) Denote by H the category of p-cycles concentrated in x. Let ·̃ and Γ+

be the functors as defined in 2.1.5. Extending this, we construct an exact functor

·̃ : modH(R) −→ H with kernel modH
0 (R). Denote by r : modH(R) −→ modH(R)

the exact functor, given by restricting an H-graded module to the subgroup H.

Obviously, r(R) = R. Moreover, M is of finite length over R if and only if r(M(ih))

is of finite length over R for all i = 0, . . . , p− 1. Hence r induces a functor r on the

quotient categories. For M ∈ modH(R) and i = 0, . . . , p define

(6.2.1) Ei = ˜r(M(ih)) ∈ H.

Then Ep = E0(x) and

M̃
def
= [ E0

·π−→ E1
·π−→ E2 → · · · → Ep−1

·π−→ E0(x) ]
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defines a p-cycle concentrated in x. In fact, by Theorem 3.1.2 multiplication (·π)p =

·π induces the natural transformation 1
εx−→ σx. In this way we get the functor ·̃

with the desired properties. By using r the induced functor on the quotient category

is full, since the sheafification functor is.

It remains to show that ·̃ is dense. Let

E = [ E0
x0−→ E1

x1−→ E2 → · · · → Ep−1
xp−1−→ E0(x) ]

be an arbitrary p-cycle concentrated in x. For each i, define Mi = Γ+(Ei) ∈
mod

H
(R) and fi = Γ+(xi). Define an R-module by M = (M0, . . . , Mp−1), where

the homogeneous elements from (Mi)g have degrees in g + ih (for g ∈ H), and

by defining the action of π on Mi by m · π = fi(m). This is well-defined, since

multiplication with πp = π agrees with fi+p−1 ◦ · · · ◦ fi (compare 3.1.1). Obviously,

M̃ � E. �

Remark 6.2.5. (1) The proof of the denseness of ·̃ : modH(R) −→ H shows,

that there is a functor Γ+ : H −→ modH(R) such that ·̃ ◦Γ+ is isomorphic to the

identity functor. Moreover, (restricting to positive gradings) it is right adjoint to ·̃ ,

which follows from the adjointness of the corresponding functors ·̃ : modH+(R) −→
H and Γ+ : H −→ modH+(R) (compare 2.1.5).

(2) Degree shift by h on modH(R) corresponds to the tubular shift σx on H.

(3) Let y ∈ X, y �= x be a (homogeneous) point such that the corresponding

prime πy is central. The conclusion in Theorem 3.1.2 (for y) extends (componen-

twise) to H = H
(

p
x

)
, that is, right multiplication with πy ∈ R ⊂ R induces the

natural transformation 1H
y−→ σy. �

Corollary 6.2.6. Let π1, . . . , πt ∈ R be central prime elements, which are
pairwise non-associated, let x1, . . . , xt ∈ X be the associated points, respectively.
Denote by R the algebra obtained from R by insertion of weights p1, . . . , pt ≥ 2 into
π1, . . . , πt, respectively. Then R is a graded factorial algebra and

modH(R)

modH
0 (R)

� H = H
(

p1, . . . , pt

x1, . . . , xt

)
.

Proof. With the preceding remark, we can apply the theorem inductively. �

Remark 6.2.7. Let R = R[π1/p] with π ∈ R a central prime associated to a

homogeneous point x.

(1) For M = R, the Ei in (6.2.1) become Ei = r̃(Rπi) (i = 0, . . . , p − 1), so

that ·π defines an isomorphism between Ei and Ei+1 (for i < p − 1). Moreover,

Ep = R̃0(h) and multiplication with π gives only a monomorphism Ep−1 −→ Ep.

We see, that the associated p-cycle L is isomorphic to

j(L) = [ L = L = L = · · · = L
·π−→ L(x) ],
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where j : H −→ H is the canonical embedding. Moreover, with the tubular shift

σx on H we have a morphism of p-cycles

L = [ L · · · L L
·π

·π

L(x) ]

σxL = [ L · · · L
·π

L(x) L(x) ]

It is easy to see that j(L) is a special line bundle, if L is.

(2) Assume that π = u1 . . . ue with irreducible ui ∈ R of degree f . Then the

morphism L −→ σxL from (1) factorizes into e morphisms between line bundles.

For example, for e = 3 we get the following picture:

L = [ L · · · L L
π·

u3·

L(x) ]

L · · · L
u3·

L(f)
u1u2·

u2·

L(x)

L · · · L
u2u3·

L(2f)
u1·

u1·

L(x)

σxL = [ L · · · L
π·

L(x) L(x) ]

Note that multiplications with the (non-central) ui from the left act on R as mor-

phisms of right R-modules.

The line bundles lying in between L and σx(L) are not of the form R̃(g) for

some g ∈ H. (See also the example 8.5.5.)

(3) The restriction functor r : mod
H

(R) −→ mod
H

(R), or more precisely, the

induced functor r between the quotient categories, plays the same role as the functor

r : H −→ H defined in 6.1.2. �
With the results of Section 4.3 we get the following.

Corollary 6.2.8. Let X be an exceptional curve. The following statements
are equivalent:

(1) X is commutative.
(2) X is multiplicity free.
(3) X admits a commutative graded factorial domain as projective coordinate

algebra. �
As a consequence of this section, insertion of weights can be perfectly described

on the level of the projective coordinate algebra as far as central prime elements

are concerned. One should emphasize that many interesting weighted examples

can be examined already in this restricted context. Whereas insertion of weights is

established very general by the p-cycle construction, a corresponding description on

the level of the graded algebra for weight-insertion into non-central prime elements

is still not available.

Problem 6.2.9. Describe the concept of insertion of weights into prime ele-

ments which are not central.
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6.3. Automorphism groups for weighted curves

Each exceptional curve arises by insertion of weights at finitely many points

for some homogeneous exceptional curve [68]. The following proposition reduces

the problem of calculating the automorphism group essentially to the homogeneous

case.

Let X be a (homogeneous) exceptional curve and φ ∈ Aut(X). Recall that φ
denotes the shadow of φ. Let p : X −→ N be a weight function. Then φ is called

weight preserving (with respect to p), if p(φ(x)) = p(x) for all x ∈ X. We have

in mind the following situation: Let x1, . . . , xt ∈ X be distinguished points and

p1, . . . , pt weights. Then let p be defined by p(xi) = pi (i = 1, . . . , t) and p(x) = 1

for all x different from the points x1, . . . , xt.

Proposition 6.3.1. Let X be an exceptional curve with underlying homoge-
neous exceptional curve X such that X arises from X by insertion of the weights
p1, . . . , pt into the distinct points x1, . . . , xt, respectively. Then Aut(X) can be iden-
tified with the subgroup of elements in Aut(X) which preserve these weights.

Proof. Let u ∈ Aut(X). Then there is a unique v ∈ Aut(H) such that u = v,
where  : H −→ H is left adjoint to the inclusion j : H −→ H, compare 6.1.2.

Moreover, j � 1H. Let L be the structure sheaf of X as before. Then jL is a special

line bundle of X. Since u(jL) = jL, we get v(L) � v(jL) = u(jL) = j(L) � L.

If u � 1H, then v � vj � uj � j � 1H. It follows that u �→ v defines a map

ι : Aut(X) −→ Aut(X), which is a homomorphism of groups.

We show injectivity of this map. Assume, that v � 1H. Then u � . By 6.1.4

it follows, that u preserves all simple objects, hence u ◦ σx � σx ◦ u for each x ∈ X
by 0.4.8. It follows, that u acts like the identity on the components of p-cycles

in x and also on the components of morphisms between such cycles. Considering

the natural transformation 1 −→ σx it follows that u also acts as the identity on

“horizontal” arrows in each cycle. Thus, u acts naturally as identity on p-cycles

concentrated in x, that is, u � 1H.

Each v ∈ Aut(X) lying in the image of ι preserves the weights. Conversely,

assume that v ∈ Aut(X) preserves the weights p1, . . . , pt. Then v can be extended

“componentwise” onto cycles, and inductively to an element u ∈ Aut(X) such that

u = v. Hence v = ι(u). (For example, if v(x1) = x2 and p1 = p(x1) = p(x2) = p2,

then v can be extended to u : H
(

p1

x1

)
−→ H

(
p2

x2

)
, and this can be continued.) �

Corollary 6.3.2. Let X be an exceptional curve. Then the isomorphism class
of Aut(X) is independent of the chosen special line bundle L as structure sheaf.

Proof. Let L and L′ be two special line bundles. After applying suitable

tubular shifts associated to exceptional points, L and L′ are special with respect

to the same set of exceptional simple objects. By perpendicular calculus L and

L′ correspond to line bundles on the underlying homogeneous curve Y. But the

definition of Aut(Y) is clearly independent of the choice of the structure sheaf.

Then the assertion follows by observing that if an automorphism φ of H fixes L
(up to isomorphism), then σxφσ−1

x fixes σx(L) for any exceptional point x. �

Also the calculation of the Picard group reduces to the homogeneous case.

Recall the following notion we already used before. Let H be an abelian group,
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h ∈ H and p ≥ 2 be an integer. Then denote by H[h
p ] the abelian group given by

(H ⊕ Z)/Z(−h, p). Similarly, H[h1
p1

, . . . , ht

pt
] is defined inductively.

The next proposition follows immediately with 6.1.5.

Proposition 6.3.3. With the same notations as in Proposition 6.3.1, we have

Pic(X) = Pic(X)

[
σx1

p1
, . . . ,

σxt

pt

]
. �

The following is the extension of Proposition 5.2.3 to the weighted case.

Proposition 6.3.4. Let X be an exceptional curve, such that for the underlying
homogeneous situation there is an exhaustive automorphism in the Picard group,
and such that the underlying bimodule is not of orbit case IIIb. Let G be the ghost
group. Then the group Pic(X)/ Pic(X)∩G acts simply transitive on the Aut(H)-orbit
of the structure sheaf L, and there is a split exact sequence of groups

1 −→ Pic(X)/ Pic(X) ∩ G −→ Aut(H)/G −→ Aut(X)/G −→ 1.

Proof. Let L′ be lying in the same Aut(H)-orbit X as L. After applying

suitable shifts associated to exceptional points we can assume that L and L′ are

special with respect to the same set of exceptional simple objects. By perpendicular

calculus, L and L′ are line bundles over the associated homogeneous curve. By

assumption, there is a Picard element mapping L onto L′. Hence Pic(X) acts

transitively on X. Each ghost fixes L, hence also any other member of X. We get

an induced action of Pic(X)/ Pic(X)∩G on X, which is obviously simply transitive.

Define Aut(H)/G −→ Aut(X)/G by [φ] �→ [σ ◦ φ], where σ ∈ Pic(X) such that

σ(φ(L)) � L. This induces the split exact sequence. �
In the special situation k = R Proposition 6.3.4 can be formulated as follows.

Proposition 6.3.5. Let X be an exceptional curve over the real numbers. Let
G be the ghost group. Then the group Pic(X)/G acts simply transitive on the set of
all (isomorphism classes of ) special line bundles and there is a split exact sequence
of groups

1 −→ Pic(X)/G −→ Aut(H)/G −→ Aut(X)/G −→ 1. �

Note that [58, Lem. 4+Thm. 5] is not quite correct in the twisted case C ⊕ C,

where G is non-trivial; moreover, we have to restrict to special line bundles as in

the preceding proposition. We will give an example, where there are line bundles

which are not special in 8.5.1.

For the domestic curves and the tubular curves over the real numbers the

automorphism groups are listed in Appendix A.1.



CHAPTER 7

Exceptional objects

In this chapter we briefly expose two examples of problems in the context

of exceptional objects. The first is the proof of the transitivity of the braid group

action on the set of complete exceptional sequences over an exceptional curve which

shows that the result is independent of the base field’s arithmetic. By contrast,

the second example does not carry over to an arbitrary field. It deals with the

characterization of exceptional curves by graded factoriality.

7.1. Transitivity of the braid group action

In this section we report on a joint result with H. Meltzer [60] which supports

the philosophy that results on exceptional objects are essentially independent from

the base field.

Let X be an exceptional curve with hereditary category H. A sequence

(E1, . . . , En) of exceptional objects in H is called exceptional sequence, if for all

j > i we have Hom(Ej , Ei) = 0 = Ext1(Ej , Ei). It is called complete, if n coincides

with the rank of the Grothendieck group of H.

The notion of complete exceptional sequences is closely related to the concept

of tilting objects (complexes). We remark that there is a characterization of ex-

ceptional curves similar to 0.3.6 in terms of the existence of a complete exceptional

sequence instead of a tilting object [68].

The braid group Bn on n strands is defined by generators σ1, . . . , σn−1 and

relations σiσj = σjσi for j ≥ i + 2 and σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n − 2.

The braid group Bn acts on the set of all exceptional sequences of length n: σi

replaces in (E1, . . . , En) the pair (Ei, Ei+1) by the pair (Ei+1, REi+1(Ei)), where

REi+1(Ei) is the right mutation of Ei by Ei+1 (see [60] for details).

Theorem 7.1.1 ([60]). Let X be an exceptional curve and let n be the rank of
the Grothendieck group of X. Then the braid group Bn acts transitively on the set
of complete exceptional sequences in H.

Exceptional vector bundles play an important role in algebraic geometry in the

study of vector bundles over various projective varieties, and were introduced by

Drezet and Le Potier [31] in connection with the investigation of stable bundles.

Exceptional sequences and the braid group action were studied by Bondal [10].

Transitivity of this action on the set of complete exceptional sequences was shown

for P2 by Rudakov [98], for P1 ×P1 by Rudakov [97] and for arbitrary del Pezzo

surfaces by Kuleshov and Orlov [52]. We remark that there is a related concept of

(collections of) spherical objects in the context of mirror symmetry, see [101].

In representation theory the importance of exceptional objects is without ques-

tion. The transitivity of the braid group action on the set of complete excep-

tional sequences was established over an algebraically closed field for the category

97
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of modules over a hereditary algebra by Crawley-Boevey [20] and for the category

of coherent sheaves over a weighted projective line by Meltzer [78]. Ringel [94]

simplified and extended Crawley-Boevey’s result to arbitrary hereditary Artin al-

gebras. This last result gave a hint that Meltzer’s result should also be true for

arbitrary exceptional curves. On the other hand, the proof for an algebraically

closed field presented in [78] did not work over an arbitrary field. Moreover, the

results in [53, 56] on tubular curves have shown that it is often not predictable

whether new effects occur or not.

We now briefly sketch the idea of the proof from [60]. The proof is by induction

on the rank n of the Grothendieck group K0(X). The following lemma is crucial.

Lemma 7.1.2. Let X be a non-homogeneous exceptional curve. Then each com-
plete exceptional sequence in H can be shifted by the braid group to an exceptional
sequence which contains a simple object.

7.1.3 (Proof of Theorem 7.1.1). Relying on the lemma, the proof of Theo-

rem 7.1.1 is straight-forward by induction, like in the algebraically closed case: For

n = 2, that is, if X is homogeneous, the proof is easy. Assume n > 2. Then there is a

“canonical” complete exceptional sequence C = (C1, . . . , Cn) given by a certain tilt-

ing bundle in H ([70]). Given any complete exceptional sequence E = (E1, . . . , En)

one can assume by the lemma that En = S is an exceptional simple object. By

the special structure of C we can also assume Cn = S. Then we consider the right

perpendicular category S⊥ of S, which is an exceptional curve where the rank of

the Grothendieck group is n − 1, and use the induction hypothesis. �
The proof of Lemma 7.1.2 uses the following rank formula [60] which follows

from [43]. Forming the right perpendicular category E⊥ to an exceptional vector

bundle E, we switch to a module category E⊥ � mod(Λ), where Λ is hereditary

(not necessarily connected) with n − 1 simple modules.

Proposition 7.1.4. Let E be an exceptional object in H+. Denote by
S1, . . . , Sn−1 a complete system of simple modules in E⊥ and by P1, . . . , Pn−1 their
projective covers. Then

rk(E)2

[End(E) : k]
=

n−1∑
i=1

rk(Pi) · rk(Si)

[End(Pi) : k]
.

7.1.5 (Proof of Lemma 7.1.2). It is sufficient to show that in each orbit O
there is a complete exceptional sequence E = (E1, . . . , En) such that Ei is of finite

length for some i. Assume that for the orbit O this is not the case. Then in O
appears an exceptional vector bundle E, such that

rk(E)2

[End(E):k] is minimal. We can

assume, that E appears in E with E = En. Forming E⊥, the exceptional sequence

(E1, . . . , En−1) is complete in E⊥. Using the transitivity of the braid group action

for mod(Λ) proved by Ringel [94], the sequence E can be shifted to the exceptional

sequences (P1, . . . , Pn−1, E) and (Sn−1, . . . , S1, E), where the Pi and the Si are as

in the preceding proposition, suitably ordered with P1 = S1. From the rank formula

we get the contradiction
rk(P1)

2

[End(P1):k] < rk(E)2

[End(E):k] . �
Over an arbitrary field k the endomorphism ring of an exceptional object is a

finite dimensional skew field over k and need not to coincide with k itself. Therefore

the following corollary is an important consequence of the transitivity of the braid

group action.
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Corollary 7.1.6. The list of endomorphism skew fields appearing in a com-
plete exceptional sequence in H is invariant. �

7.2. Exceptional objects and graded factoriality

If k is algebraically closed then there is a relationship between the concept of

graded factoriality and the existence of exceptional objects, as illustrated by the

following results:

7.2.1. For a smooth projective curve C over an algebraically closed field k, the

following are equivalent [69]:

(1) C is of genus zero.

(2) coh(C) admits an exceptional object.

(3) coh(C) admits a tilting object.

(4) There is a (commutative) Z-graded factorial k-algebra R, affine of Krull

dimension two, such that coh(C) � modZ(R)

modZ

0(R)
.

Moreover, it follows from [53] that this is also true for k = R.

7.2.2. A similar result which follows from [55, 67], see [68] is: Let H be a small

abelian connected category over an algebraically closed field k. Then the following

assertions are equivalent:

(1) H is equivalent to the category of coherent sheaves over an exceptional

curve.

(2) H is of the form
modH(R)

modH
0 (R)

for a (commutative) H-graded factorial affine k-

algebra R of Krull dimension two, where H is a finitely generated abelian

group of rank one.

The results of Chapters 1 and 6 indicate that the implication (1)⇒(2) (replacing

“commutative” by “noncommutative”) remains valid for an arbitrary base field (up

to the insertion of weights into non-central prime elements). But the converse and

also 7.2.1 is wrong in general, even in a commutative situation, as Lenzing pointed

out in [69]:

Example 7.2.3. Let k = F2 and R be the commutative Z-graded algebra

F2[X, Y, Z]/(X6 + Y 3 + Z2 + X2Y 2 + X3Z),

where deg(X) = 1, deg(Y ) = 2 and deg(Z) = 3. (Note that R is not generated

in degree zero and one.) Then R is Z-graded factorial and the quotient category
modZ(R)

modZ

0(R)
is equivalent to the category coh(C) of coherent sheaves of a smooth pro-

jective curve C of genus one (and not zero). �
It would be interesting to characterize the class of (noncommutative) graded

factorial algebras which are related to the exceptional curves.





CHAPTER 8

Tubular exceptional curves

Let Σ be a concealed canonical algebra over a field k with corresponding excep-

tional curve X. Σ (and X) are called tubular if the radical of the Grothendieck group

K0(Σ) is finitely generated abelian of rank two. Equivalently, the Coxeter transfor-

mation is of finite order. Note that the radical for non-tubular Σ (X, respectively)

has always rank one.

An exceptional curve X is tubular if and only if its virtual genus [66, 68, 70]

gX = 1 +
εp

2

[
t∑

i=1

di

(
1 − 1

pi

)
− 2

ε

]
is one. (Here, p is the least common multiple of the weights p1, . . . , pt, compare

also 0.4.5.) From this property, it is not surprising that tubular exceptional curves

have a strong affinity to elliptic curves T. In both cases, coh(X) and coh(T), all

indecomposable objects lie in tubes (in the language of representation theory).

More precisely, Atiyah’s classification [4] of vector bundles over an elliptic curve

T over an algebraically closed field k shows that coh(T) consists of a rational family

of tubular families, each parametrized by T and consisting of homogeneous tubes.

(Note, that here “rational family” means “indexed by the rational numbers”.)

In [91] Ringel introduced the tubular (canonical) algebras over an algebraically

closed field and showed that the indecomposable modules over such an algebra can

be classified basically by a rational family of tubular families, each parametrized

by the projective line P1(k); in each tubular family there are finitely many non-

homogeneous tubes. Accordingly, the (bounded) derived category (see [37]) of a

tubular algebra consists entirely of tubes [42].

The connection between these geometric and representation theoretic results

was given by Geigle and Lenzing when they introduced the weighted projective

lines [34] and later by Lenzing and Meltzer for the tubular case [71]. The funda-

mental concept there was that of tubular mutations [79], which are automorphisms

of the derived category. (In this tubular situation the tubular shifts form a very

small subclass of them.)

An additional feature of the mentioned results over an algebraically closed field

is that for a fixed tubular algebra (tubular exceptional curve, elliptic curve, respec-

tively) all tubular families are equivalent categories. We showed in [53, 56] that

this is no longer true over an arbitrary field. There are tubular exceptional curves

which admit tubular families which are not equivalent. Accordingly, there are tubu-

lar exceptional curves X and X′ which are derived equivalent but not isomorphic.

In different terminology, X and X′ are Fourier-Mukai partners.

The present chapter is devoted to the study of the automorphism group

Aut(Db(X)) of the bounded derived category of a tubular exceptional curve X.

This group acts on the set of all separating tubular families in Db(X). Over an

101
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algebraically closed field the preceding remark implies that this group action is

transitive, but over an arbitrary field there may occur more than one orbit. The

number of these orbits is called the index of X. Our main result in [59] is that

the index of a tubular exceptional curve X is at most three and that such curves

of index three exist. We summarize a proof for this result and present the new

Proposition 8.1.6 which improves the argument.

We study examples exploiting the results from the previous chapters. They

illustrate the principle how to determine the automorphism group Aut(Db(X)) in

general. The central example will be a tubular exceptional curve of index three.

In this example, the Grothendieck group is of rank three. (In general, the rank of

the Grothendieck group of a tubular exceptional curve is at least three and at most

ten [66].) Tubular exceptional curves with this property are of particular interest.

First of all, since there is only one exceptional tube (of rank two) in each tubular

family, exceptional objects are essentially determined by their slope and explicit

calculations are much easier than for other tubular curves. This was demonstrated

by Ringel [95], pointing out an interesting link between tilting modules and Farey

fractions.

Moreover, in the tubular case the following effects arise only when K0(X) is of

rank three:

• the occurrence of index three;

• the occurrence of roots (even 1-roots) in K0(X) which are not realizable

by indecomposable objects in H (we refer to [53, 59]).

In the algebraically closed case each line bundle L over an exceptional curve

X is exceptional. Over an arbitrary field this is also true for line bundles over a

domestic exceptional curve (that is, when the virtual genus satisfies gX < 1). We

will show that it is false for some tubular cases where the Grothendieck group is of

rank three or four.

8.1. Slope categories and the rational helix

Throughout this section let X be a tubular exceptional curve over a field k.

8.1.1 (Slope). For each x ∈ K0(X) such that rkx �= 0 or deg x �= 0 define the

slope by µx = deg x
rkx . The slope of a non-zero object in H is defined as the slope

of its class. Stability and semistability of non-zero objects in H is defined with

respect to the slope as in [34]. For each q ∈ Q̂ := Q ∪ {∞} denote by H(q) the

full subcategory of H which is formed by the zero sheaf and the semistable sheaves

of slope q. We call the categories H(q) (and also their translates in the derived

category) slope categories. Note that for example H(∞) = H0.

8.1.2. Since each indecomposable object in H is semistable (compare [34, 5.5]),

H is the additive closure of its slope categories, and since H is hereditary we have

D := Db(X) =
∨
n∈Z

H[n] =
∨

(n,q)∈Z×bQ
H(q)[n],

which means that Db(X) is the additive closure of the (disjoint) copies H[n] and

also of the H(q)[n], and moreover, there are non-zero morphisms from H[n] to H[n′]
(from H(q)[n] to H(q′)[n′], resp.) only if n ≤ n′ ((n, q) ≤ (n′, q′), resp., where the

rational helix Z×Q̂ is endowed with the lexicographical order [72]). More precisely,
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for all X, Y ∈ H and all m, n ∈ Z we have HomD(X[n], Y [m]) = Extm−n
H (X, Y ).

Note that Exti
H(−,−) = 0 for i ∈ Z, i �= 0, 1. Here, X[n] denotes the element in

the copy H[n] which corresponds to X ∈ H. The automorphism T on D, which is

induced by the assignment X �→ X[1], is called translation functor .

8.1.3 (Riemann-Roch formula). Let p be the least common multiple of the

weights p1, . . . , pt. Recall that for any x, y ∈ K0(X)

〈〈x,y〉〉 =

p−1∑
j=0

〈τ jx,y〉.

For any x, y ∈ K0(X) the following formula holds ([66, 70]).

〈〈x,y〉〉 = κε

∣∣∣∣ rkx rky
deg x deg y

∣∣∣∣ ,
which in case rkx �= 0 �= rky can also be written as 〈〈x,y〉〉 = κε rkx rky(µy−µx).

As application one gets: If X, Y ∈ H are indecomposable with µ(X) < µ(Y ), then

Hom(X, τ jY ) �= 0 for some j.

Problem 8.1.4 (Calabi-Yau property). If k is algebraically closed then the

Auslander-Reiten translation, that is, the Serre functor τ on H is of order p in

the group Aut(H) (where p is the least common multiple of the weights). By Serre

duality we conclude that the triangulated category Db(X) is Calabi-Yau of fractional

dimension p/p, in the sense of [48].

It is an interesting question whether this is also always true if k is an arbitrary

field. A priori on has to take ghosts into account.

8.1.5 (Interval categories). For each q ∈ Q let H〈q〉 be the subcategory in D
defined by

H〈q〉 = H(q)
− [−1] ∨H(q)

+ ∨H(q),

where

H(q)
+ =

∨
−∞<r<q

H(r), H(q)
− =

∨
q<r≤∞

H(r).

Moreover

D = D(q)
+ ∨H(q) ∨ D(q)

− ,

where D(q)
+ = {X ∈ D | Hom(H(q), X) = 0} and D(q)

− = {Y ∈ D | Hom(Y,H(q)) =

0}. We call the categories H〈q〉 and also their translates in D interval categories.
�

The first proof of the following proposition was a by-product in [56, 59] of the

case by case analysis how the automorphism group Aut(D) acts on the set of slope

categories. We now give a more systematic argument.

Proposition 8.1.6. Let X be a tubular exceptional curve. For each q ∈ Q̂ the
interval category H〈q〉 is the sheaf category of a tubular exceptional curve X〈q〉.

Proof. The key-point (see [56, Prop. 7]) is to show that the slope category

H(q) is non-trivial. We modify the argument given in [56]. There is a normalized

rank function rkq on K0(X) such that rkq(F ) ≥ 0 for all objects F ∈ H〈q〉 and

rkq(F ) = 0 if and only if F ∈ H(q). In fact, if q = d/r, where d and r are coprime,

then (up to normalization) rkq(F ) = d·rk(F )−r·deg(F ). Moreover, by semistability
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there is no non-zero morphism from an object of rank zero to an object of non-zero

rank. Since H(q) is noetherian (possibly trivial), noetherianness of the category

H〈q〉 follows straight-forwardly, see [74, Lem. 5.2].

Let H〈q〉0 be the subcategory in H〈q〉 of objects of finite length which is a Serre

subcategory. By [74] the quotient category H〈q〉/H〈q〉0 is a length category, and

its length function defines a rank function on H〈q〉. This rank function is (up to

some normalization factor) of the form rkq′ for some slope q′ (see [57, Prop. 5.3]).

It follows, that q′ ≤ q and (up to translation) H〈q〉0 = H(q′), which is non-trivial

by noetherianness of H〈q〉. Assume that q′ < q. Then:

(i) By semistability and noetherianness there is no non-zero object of slope r
with q′ < r ≤ q. (If 0 �= F has slope r consider a maximal subobject of F ; the

simple factor then lies in H(q′) which gives a non-zero map from F to an object of

smaller slope.)

(ii) Since the category H〈q′〉 is connected there is a non-zero torsion-free object

in H〈q′〉. Shifting this object sufficiently far to the left leads to a non-zero object

of slope r with q′ < r ≤ q, a contradiction to (i).

Therefore q = q′ follows, hence H(q) is also non-trivial. �

It follows that the slope induces a bijection between all slope categories in

Db(X) and the elements of the rational helix Y = Z × Q̂.

8.1.7. Moreover, it follows that for all q ∈ Q̂ there is defined the q-symbol , that

is, the symbol of the curve X〈q〉.
For all q, q′ ∈ Q̂ the tubular exceptional curves X〈q〉 and X〈q′〉 are de-

rived equivalent, that is, they are Fourier-Mukai partners. In particular, all the

Grothendieck groups K0(X〈q〉) and K0(X〈q′〉) (equipped with the Euler forms) are

isomorphic. This means, by definition, that the symbols of X〈q〉 and X〈q′〉 are

equivalent, but in general they are different, and accordingly the curves X〈q〉 and

X〈q′〉 non-isomorphic, that is, H〈q〉 �� H〈q′〉. (Compare the list of (equivalence

classes of) tubular symbols given in Appendix B.)

Furthermore, for all q the tubular shifts associated to points in X〈q〉 are defined

and are automorphisms of H〈q〉, which extend to elements in Aut(D). These are

by definition the tubular mutations.

Lemma 8.1.8 ([56, Cor. 11]). Let φ ∈ Aut(D). For any element (n, q) of the
rational helix there is a unique (n′, q′) in the rational helix such that φ(H(q)[n]) =

H(q′)[n′]. Hence, by setting φ(n, q) = (n′, q′) we get an automorphism φ of the
rational helix. This induces a homomorphism of groups Φ : Aut(D) −→ Aut(Y),
φ �→ φ. �

8.1.9. Note that Aut(Y) � B3, the braid group on three strands, which is

defined by generators s,  and the relation ss = s [72]. The translation T is

mapped under Φ to t = (s)3, which is a central element of infinite order. We have

the exact sequence

1 −→ 〈t〉 −→ B3
p−→ PSL2(Z) −→ 1,

given by  �→
(

1 0

−1 1

)
, s �→

(
1 1

0 1

)
.

We described in [59] which subgroups of B3 occur as images of Φ in the different

cases (compare also [57, Table 1]). Typically the image of Φ is generated by the
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images of two or three tubular mutations and the translation in the derived category.

Here we write “typically”, since the situation is not fully clarified in the cases where

the rank of the Grothendieck group is three. See also Remark 8.2.9 below.

8.1.10. The kernel of Φ is given by the automorphisms preserving the slope.

Since these automorphisms restrict naturally to H, we consider them as elements

in Aut(H), which defines the subgroup Autµ(H). With the assumptions of Propo-

sition 6.3.4 the slope preserving automorphisms are just those of Pic0(X) and of

Aut(X) (and compositions of them), and with the ghost group G we have

Autµ(H)/G �
(

Pic0(X)/ Pic0(X) ∩ G
)

� Aut(X)/G.

In particular it follows, that if X and X′ are derived equivalent tubular exceptional

curves, then there is a relationship between Pic0(X) and Aut(X) on the one hand

and Pic0(X′) and Aut(X′) on the other hand. But it is not true in general that the

automorphism groups of X and X′ are isomorphic, neither the geometric automor-

phism groups nor the ghost groups (compare 8.3.2).

8.2. The index of a tubular exceptional curve

We keep the notations from the previous section.

If k is algebraically closed the map Φ is always surjective. Equivalently, Aut(D)

acts transitively on Y in this case. But in general Φ is not surjective.

Definition 8.2.1. Let X be a tubular exceptional curve. Then the number of

Aut(Db(X))-orbits in the rational helix Y is called the index of X. Similarly, the

index of a tubular algebra is defined.

Theorem 8.2.2 ([53, 59]). The index of a tubular exceptional curve is at most
three.

In the following we sketch the idea of the proof. For details we refer to [59].

8.2.3. Denote by V = K0(X) the Grothendieck group of H, by R = Rad(V )

the radical of V , and by P R the set of direct summands of R of rank one. Taking

the slope of generators of such direct summands induces a bijection between P R

and Q̂ (see [57]). There is the following commutative diagram

Aut(D)
Φ

κ

Aut(Y) = B3

p

Aut(V )
Ψ

Aut(P R) = PSL2(Z).

Each element in Aut(V ) induces by restriction to the radical an automorphism of

P R, which defines the map Ψ. The automorphism group of P R can be identified

with the projective modular group PSL2(Z) (see [57]). κ is defined by κ(φ)([X]) =

[φX] for any φ ∈ Aut(D) and any X ∈ D.

8.2.4. It is shown in [57] that the group Aut(V ) acts on Q̂ with at most

two orbits. This is shown by determining a subgroup of Aut(V ) generated by

a few certain shift automorphisms (defined on the K-theoretical level, see [66])

such that the Ψ-image of this subgroup coincides with the Ψ-image of Aut(V ) and

therefore this subgroup acts with at most two orbits. Then the idea of the proof of
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Theorem 8.2.2 is to realize these K-theoretical automorphisms by tubular mutations

on the derived level. In the cases where the rank of the Grothendieck group is

greater or equal than four this can be accomplished without problem, so that there

are also at most two orbits on the derived level. But if the rank of the Grothendieck

group equals three (that is, in each tubular family there is precisely one exceptional

tube, and this is of rank two) the index depends also on the arithmetic of the

base field, which leads to cases of index three (see Proposition 8.2.5 below; see also

Appendix B for a list of the 17 tubular cases). Moreover, the analysis in [59] shows

the following propositions which stress the special role of the rank three case.

Proposition 8.2.5. Let X be a tubular exceptional curve such that the
Grothendieck group is of rank three. Then the index of X is at most three.

Assume that there exists q ∈ Q̂ such that the numerical type of X〈q〉 is ε = 1

and such that there exists a unirational point in X〈q〉. Then the index of X is at
most two.

If the symbol of X equals
0
@2

4
2

1
A and if, for example, X and X〈2〉 contain unira-

tional points, then the index is one.

Proof. Let q ∈ Q̂ such that the numerical type of X〈q〉 is ε = 1. Switching

to X〈q〉 we can assume that the numerical type of X itself is ε = 1. The Φ-

image of the tubular mutations with respect to the exceptional tubes containing

the structure sheaf L and an exceptional simple object together with the Φ-image

of the translation T gives the subgroup 〈t, , s4〉 of B3. This subgroup acts with

three orbits on the rational helix. The remaining assertions follow from the analysis

in [57, 10.]. �
It is easy to see that each (2, 2)-bimodule over a finite field k is non-simple,

hence there is a unirational point for the associated curve (compare 0.6.2). The

same is true for the field k = R of real numbers. Thus we get

Corollary 8.2.6. The index of a tubular algebra (or tubular exceptional curve)

over any finite field k, or over the field R of real numbers, is at most two. �
Proposition 8.2.7 ([59]). Let X be a tubular exceptional curve and r be the

rank of its Grothendieck group. There is a subgroup U of Aut(Db(X)) acting tran-
sitively on each Aut(Db(X))-orbit in the set of all slope categories such that addi-
tionally the following holds:

If r ≥ 4, or if the index is three, then U is generated by the translation T and
two tubular mutations associated to exceptional tubes. �

Proposition 8.2.8. Let X be a tubular exceptional curve such that the
Grothendieck group is of rank three.

(1) Let U be the subgroup of Aut(Db(X)) which is generated by the translation
T and all tubular mutations associated to exceptional tubes (for all slopes). Then
U acts with three orbits on the set of all slope categories.

(2) Moreover, for K0(X) there are three possible cases :

a) The symbol is
0
@ 2

4
2

1
A. Then the index of X is one, two or three (the precise

value depending on the arithmetic of k).

b) The symbol is
0
@ 2

4
4

1
A or

„
2
2

2

«
. Then the index of X is two or three.
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c) The symbol is
„

2
4

«
or

0
@ 2

2 2
2

1
A. Then the index of X is two or three. �

Remark 8.2.9. (1) For the case c) in the preceding proposition we constructed

examples for indices two and three, respectively ([59]; see the following sections).

We remark that in [59] we stated that in cases a) and b) examples of index three

do not exist. This was based on an argument which turned out to be wrong. We

now do not see any reason why examples of index three in these cases should not

exist.

(2) Which index actually occurs depends on the question which of the 6 cosets

of the subgroup 〈t, , s4〉 in B3 have representatives which are realizable by automor-

phisms of the derived category. If (besides the identity) none of these representatives

is realizable the index is three. If additionally only s2 is realizable then the index is

two. If any other coset is realizable then the index is one (only possible in case a).

Another question (related to Problem 5.2.2) is whether such realizations (assuming

existence) are always possible by tubular mutations (compare Proposition 6.3.4).

8.3. A tubular curve of index three

In this section we exhibit our example [59] of a tubular exceptional curve X of

index three and list its further properties. Knowledge of the action of Aut(Db(X))

on the rational helix allows to determine Aut(Db(X)) itself.

Recall that for sequences p = (p1, . . . , pt) and d = (d1, . . . , dt) of positive

integers the abelian group Z
[

d1
p1

, . . . , dt

pt

]
is also denote by L(p,d).

Proposition 8.3.1. There is a tubular exceptional curve X over k = Q such
that the following holds :

(1) The index of X is three.
(2) A projective coordinate algebra of X is given by the graded factorial algebra

R = Q[X, Y, Z, U ]/(X2 + Y 2 + Z2, U2 − X2 − 3Y 2),

which is graded by L(p,d) with p = (1, 1, 1, 2) and d = (1, 1, 1, 2). (This property
uniquely determines X.)

(3) There is a tilting bundle whose endomorphism ring is the canonical algebra
Λ given by the species

K
M

Q

K

F
F

plus certain relations, where K = Q(
√
−3,

√
2), F =

(−1,−1
Q

)
be the skew field of

quaternions over Q on generators i and j with relations

i2 = −1, j2 = −1, ij = −ji,

and moreover, M is the bimodule from 5.7.3, that is, M = K(K ⊕ K)F with the
canonical K-action and the F -action defined by

(x, y) · i =
1√
−3

(
√

2x + y, x −
√

2y), (x, y) · j = (y,−x)

for all x, y ∈ K.
(4) For the automorphism groups we have Aut(X) � V4, the Klein four group,

and
Aut(Db(X)) � (Z2 × V4) � (F2 × Z),
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where F2 is the free group in two generators.

Proof. (2) Consider the tame bimodule kFF . The associated homogeneous

exceptional curve admits S = Q[X, Y, Z]/(X2 + Y 2 + Z2) = Q[x, y, z] by 5.5.1 as

projective coordinate algebra. The element x2+3y2 is a prime element in S (see [53,

3.10.1]). Insertion of the weight p = 2 into this prime leads to the H-graded factorial

algebra

R = Q[X, Y, Z, U ]/(X2 + Y 2 + Z2, U2 − X2 − 3Y 2),

where H = L(p,d) is the abelian group as above, that is, generated by the degrees

deg X, deg Y , deg Z, deg U with relations deg X = deg Y = deg Z, 2 deg U =

2 deg X. The torsion subgroup of H is generated by deg U − deg X. Denote by X
the corresponding exceptional curve with hereditary category

H = coh(X) =
mod

H
(R)

modH
0 (R)

.

Obviously, X has the symbol σ[X] =

(
2
2 2
2

)
, and hence is tubular.

(3) The construction in [70, Prop. 5.4] leads to a tilting bundle L −→ L1(1) −→
L whose endomorphism ring is the canonical algebra Λ as described in (3): The

endomorphism ring of the simple object, which corresponds to the prime element

x2 +3y2, is isomorphic to Q[X, Y ]/(X2 +Y 2 +1, X2 +3Y 2) � Q(
√
−3,

√
2). More-

over, by considering dimensions (see [66, Prop. 10.1]), M is a (2, 2)-bimodule,

moreover a simple bimodule, since K �� F . Considering the isomorphism of alge-

bras,

K ⊗Q F �
(
−1, −1

K

)
� M2(K),

using that M is a simple K ⊗Q F -module, it follows, that M is the bimodule

from 5.7.3.

(1) Since L, L(1) and L are exceptional having pairwise non-isomorphic endo-

morphism skew fields Q, K and F , respectively, the three corresponding tubular

families are pairwise non-equivalent, hence the index of X is three. In fact, each

tubular family contains precisely one exceptional tube (of rank two) and therefore

contains precisely two exceptional objects, having the same endomorphism skew

field.

(4) Since the ghost group G is trivial, from 8.1.10 we get the following exact

sequence of groups

1 −→ Pic0(X) � Aut(X) −→ Aut(Db(X))
Φ−→ B3,

where Pic0(X) is isomorphic to the torsion part of the grading group H, hence to

Z2. Moreover, Aut(X) is the automorphism group of X, which by 6.3.1 consists of

the automorphisms of the projective spectrum Y of the graded factorial algebra S
fixing the point corresponding to the prime element x2 + 3y2. By 5.5.1, Aut(Y) �
SO3(Q), and this group acts on prime elements of degree one (which are of the

form αx + βy + γz) like a matrix on (α, β, γ). In particular, each automorphism

of Y is uniquely determined by its action on the points of degree one. Each such

automorphism thus extends uniquely to a graded algebra automorphism of S. Then

it is easy to check, which automorphisms are fixing the prime ideal generated by

x2 + 3y2, and this yields Aut(X) � V4, the Klein four group.
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We determine the image of Φ: Consider the tubular mutations σL and σS which

are associated to the tube containing L (of slope 0) and to the tube containing an

exceptional simple object S (of slope ∞), respectively. By [57, 6.] these maps on

slopes induce the actions q �→ q/(1−2q) and q �→ q+2, respectively. It follows that

the image of Φ is given by 〈t, s2, 2〉 (with t = (s)3), which is a subgroup in B3

of index 6. It follows from [100] that 〈s2, 2〉 is isomorphic to F2 and t is central,

hence we get Im Φ � F2 × Z. It is easy to see, that the induced exact sequence of

groups

1 −→ Pic0(X) � Aut(X) −→ Aut(Db(X))
Φ−→ Im Φ −→ 1

splits. Then the result follows. �
8.3.2. We keep the notation of the proposition. There are two companion

curves which are derived equivalent to X, namely the curves X〈0〉 and X〈1〉 (in the

slopes q = 0 and q = 1, respectively). Moreover, X, X〈0〉 and X〈1〉 are pairwise

non-isomorphic.

This corresponds to the fact, that there are two (further) tilting bundles in H,

such that the endomorphism rings are the canonical algebras Λ〈0〉 and Λ〈1〉 given

by the species

Q
K

F

F∗

M∗
K

(where F ∗ and M∗ denote the dual bimodules) and

F N

Q

F

K
K

(plus relations), respectively (for some bimodule N), see [59]. The algebras Λ,

Λ〈0〉, and Λ〈1〉 are tilting equivalent.

It follows from 1.7.12 that for X〈1〉 one gets as projective coordinate algebra a

graded algebra, arising by inserting the weight p = 2 into some prime element of

Q〈X, Y, Z〉/(XY − Y X, XZ − ZX, Y Z + ZY, Z2 − 3Y 2 − 2X2).

8.3.3. In [73] the following is shown over an algebraically closed field: Two finite

dimensional algebras Λ and Λ′ which are derived equivalent to the same tubular

exceptional curve and having the same Cartan matrix are isomorphic.

This is not true in general over arbitrary fields, since the tilting equivalent

tubular canonical algebras Λ and Λ〈1〉 as above have the same Cartan matrix, but

are obviously not isomorphic.

8.4. A related tubular curve of index two

The next example shows that the index is not a K-theoretic invariant.

Proposition 8.4.1. There is a tubular exceptional curve X′ over the field k =

Q(i) such that the following holds :
(1) With the tubular curve X from 8.3.1, the Grothendieck groups K0(X′) and

K0(X), equipped with the Euler form, are isomorphic.
(2) The index of X′ is two.
(3) There is a graded factorial coordinate algebra of X′ which arises by insertion

of the weight p = 2 into the central prime element X4−Y 4 in the twisted polynomial
algebra K[X; Y, α], where K = k(

4
√

2) and α is the k-automorphism 4
√

2 �→ i 4
√

2.
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(4) There is a tilting bundle whose endomorphism ring is the canonical algebra
Λ′ given by the species

k K

K

K

M
K

plus certain relations, where M is the non-simple bimodule M(K, α).
(5) Aut(X′) � Z4 coincides with the ghost group (hence the geometric automor-

phism group is trivial), and for Aut(Db(X′)) there is the exact sequence of groups

1 −→ Z2 × Z4 −→ Aut(Db(X′)) −→ U −→ 1,

where U is the subgroup 〈s2, 〉 of the braid group B3.

Proof. (3) The field extension K/k is Galois with cyclic Galois group gen-

erated by α. Let X′
0 be the homogeneous curve associated to the bimodule M =

M(K, α). A projective coordinate algebra is given by K[X; Y, α]. Insertion of the

weight p = 2 into the central prime element π = X4 − Y 4 leads by 6.2.4 to an ex-

ceptional curve X′. By 1.7.10 the multiplicity of the inserted point is 4, and hence

the symbol of X′ is

„
2
4

«
and X′ is tubular.

(1) This follows, since the symbols

„
2
4

«
and

(
2
2 2
2

)
are equivalent [57].

(2) Since M is non-simple, by 8.2.5 the index is two.

(4) This follows, since by 1.7.10 the endomorphism ring of the exceptional

simple object is k.

(5) By 5.3.4, G � Z4, and for any transformation Y �→ aY on X′
0 with a ∈ Q(i)∗

leaving the prime ideal generated by X4 −Y 4 fixed, N(a) = 1 follows and Y �→ aY
is trivial. Thus Aut(X′) = G.

Consider the map Φ : Aut(Db(X′)) −→ B3. Take the tubular mutations σL and

σS which are associated to the tube containing L (of slope 0) and to a homogeneous

tube (containing a simple object S of slope ∞), respectively. By [57, 6.] these maps

on slopes induce the actions q �→ q/(1 − q) and q �→ q + 2, respectively. It follows

that the image of Φ is given by 〈s2, 〉. (This subgroup in B3 is of index three, and

described by the defining relation (s2)2 = (s2)2, compare [58].)

By 8.1.10 the kernel of Φ is generated by G and the generator of Pic0(X′) of

order two. By 0.4.8 this generator commutes with all ghosts, and thus the kernel

of Φ is given by Pic0(X′) × G. �

8.5. Line bundles which are not exceptional

Example 8.5.1. Let k = R and let X be the tubular exceptional curve arising

by inserting the weight p = 2 into the central prime element π = X4 + Y 4 in

C[X, Y ]. Then there is a line bundle L′, which lies in a homogeneous tube.

Proof. Let S be one (of the two) exceptional simple object in H such that

Hom(L, S) �= 0. We get a short exact sequence

0 −→ L′ −→ L −→ S −→ 0,

where L′ is a line bundle. By 5.6.1 the exceptional point x has symbol data f(x) = 2,

e(x) = 2, and then 〈[L′], [L′]〉 = 0. But then Ext1(L′, L′) �= 0. Since line bundles

are stable, L′ lies in the mouth of a homogeneous tube. �
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This fact is surprising, since in the commutative case graded factoriality implies

that each line bundle is a degree shift of the structure sheaf L [34, Prop. 2.1].

We conclude, that this is not longer true in the noncommutative case, since the

projective coordinate algebra R, which arises by inserting the weight p = 2 into

π = X4 + Y 4 in C[X, Y ] is graded factorial.

8.5.2. We construct further examples of non-exceptional line bundles.

(1) In the same way as in 8.5.1 such a line bundle can be constructed for any

tubular exceptional curve with symbol

„
2
2

2

«
or

0
@2

4
2

1
A, and similarly (taking

S2 as cokernel), for the symbol

„
2
4

«
.

(2) Consider a tubular curve X with symbol
„

3
3

«
. (Compare also Exam-

ple 1.6.10.) For the kernel L′ of an epimorphism L −→ S⊕S(2) one gets 〈[L′], [L′]〉 =

0, where S is exceptional simple and S(2) is the indecomposable middle term of the

almost split sequence ending in S. Such an epimorphism exists: The universal

extension over the underlying homogeneous curve

0 −→ L(−x)
xL−→ L −→ S3

x −→ 0

and the projections S3
x � S2

x � Sx lead to the epimorphism of 3-cycles

j(L) = [ L L L
xL

L(x) ]

S ⊕ S(2) = [ S2
x Sx 0 S2

x(x) ]

Representing L′ as kernel, we see that L′ stores an “irreducible” factorization of

xL.

(3) For the symbol

„
2 2
2 2

«
it is also possible to construct an example. Take

again C[X, Y ] and take the central prime elements π1 = Y 2−X2 = (Y −X)(Y +X)

and π2 = Y 2 − 4X2 = (Y − 2X)(Y + 2X). The element (Y + X)(Y − 2X) induces

a short exact sequence

0 −→ L(−2) −→ L −→ S1 ⊕ S2 −→ 0,

where S1 and S2 are the simple objects concentrated in the points x1 and x2

associated to π1 and π2. This induces, after insertion of weights, a short exact

sequence in H
(

2 2

x1 x2

)
0 −→ L′ −→ j(L) −→ S′

1 ⊕ S′
2 −→ 0,

where S′
1 and S′

2 are exceptional simple objects concentrated in different points and

L′ is a line bundle. It is easy to see, that 〈[L′], [L′]〉 = 0.

Proposition 8.5.3. Let X be a tubular exceptional curve. If there is an excep-
tional point which is multiplicity free then each line bundle is exceptional. Accord-
ingly, if there exists a line bundle L′ which is not exceptional then the symbol of X
is one of the five symbols in 8.5.2.
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Proof. For an exceptional point x call a line bundle L′ x-special , if L′ maps

onto precisely one simple object Sx in Ux. If e(x) = 1, then each line bundle L′ is

x-special, which follows from the formula

1 = rk(L′) =
1

κεf(x)

(
〈[L′], [Sx]〉 + · · · + 〈[L′], [τp(x)−1Sx]〉

)
,

and each summand inside the brackets is divisible by 〈[Sx], [Sx]〉 = κεf(x) (com-

pare 0.4.5).

If L′ is x-special for some exceptional point x, then L′ is exceptional, since

otherwise it would lie in a homogeneous tube and would be therefore τ -stable.

Therefore we can exclude all tubular curves where there is a multiplicity free, ex-

ceptional point, which one can detect from the symbol. Only for the five symbols

from 8.5.2 such a point does not exist. �
Remark 8.5.4. Let L′ be a line bundle. If L is special with deg(L) > deg(L′),

then by the Riemann-Roch formula L′ embeds into L (up to τ -translations). If

deg(L) is minimal with this property then it is easy to check K-theoretically whether

[L′] is a root or not. One gets that the examples above are essentially all examples

of non-exceptional line bundles (in the tubular case).

Remark 8.5.5. Let X be the homogeneous exceptional curve with projective

coordinate algebra R = C[X, Y ]. Consider the non-exceptional line bundle L′ as 2-

cycle, concentrated in the point x corresponding to π = X4+Y 4, which decomposes

as π = (X2 − iY 2)(X2 + iY 2) into irreducible elements u1 and u2:

L = [ L L
π·

u2·

L(4) ]

L′ = [ L
u2·

L(2)
u1·

u1·

L(4) ]

σxL = [ L
π·

L(4) L(4) ]

This construction can be done generally with an irreducible decomposition of a

central prime (see 6.2.7). It would be interesting to understand, why this leads

sometimes to exceptional line bundles L′ and sometimes to non-exceptional L′.
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Automorphism groups over the real numbers

A.1. Tables for the domestic and tubular cases

If k is algebraically closed and of tubular weight type (2 2 2 2), then X depends

also on some parameter λ ∈ k, λ �= 0, 1. More precisely, two such curves X(2 2 2 2; λ)

and X(2 2 2 2; µ) are isomorphic if and only if they have the same j-invariant

j(λ) = 28(λ2 − λ + 1)3/(λ2(λ − 1)2). Moreover, the automorphism group depends

on this j-invariant [72]:

Aut X =

⎧⎪⎨⎪⎩
A4 j = 0,

D4 j = 1728,

V4 j �= 0, 1728.

Here, A4 denotes the alternating group (which is of order 12), D4 the dihedral group

(of order 8) and V4 = Z2 × Z2 the Klein four group. In Table A.2 we denote by

∇PGL2(R) the subgroup of PGL2(R) formed by the upper triangular matrices.

In the following tables (taken from [58]), we exhibit the automorphism groups

for the domestic and for the tubular exceptional curves over R. When parameters

t occur, then a fundamental domain of these parameters is indicated. (For the

determination of these parameter domains we refer to [58].) M denotes the under-

lying tame bimodule. The pictures in the tables indicate which weight is inserted

in which type of point(s) on the quotient of the Riemann sphere (with boundary).

By 6.3.1 one has to check which automorphisms fix the given point(s). For the

“classical” case, where M = C ⊕ C, we refer to [72]; it is not treated again.

The letters a, b, c, d, e in the tables indicate derived equivalence: Each tubular

curve in the table with a letter from a, b, c, d, e is derived equivalent to a curve in

another table with the same letter.

In case M = C ⊕ C it is easy to determine the geometric automorphism group

Aut(X)/G from Aut(X); the only ghost automorphism is induced by complex con-

jugation which is of order two.

From the tables we deduce the following

Proposition A.1.1. (1) There are no parameters in the domestic cases.
(2) If X is tubular then Aut X is finite.
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Case Symbol Parameter Aut Xt

D 1 (p | 2) − R/2π � Z2

T 1

c
(2 2 | 2) t ∈ [0, 1)

D4 t = 0

V4 t �= 0

Table A.1. Domestic and tubular curves with M = RHH

Case Weights Symbol R ⊕ R H ⊕ H

D 1 p (p) ∇PGL2(R) ∇PGL2(R)

D 2
p

( p
2
)( p

2
2

) −

C∗/R∗ � Z2

C∗/R∗ � Z2

−

D 3 p1 p2 (p1 p2) R∗� Z2 p1 = p2
R∗ p1 �= p2

R∗� Z2 p1 = p2
R∗ p1 �= p2

D 4
n 2

(
2 n
2 1

)(
2 n
2 1
2 1

) −

Z2

Z2

−

D 5
2 3

(
2 3
1 2

)( 2 3
1 2
1 2

) −

Z2

Z2

−

D 6 2

2
n (2 2 n) Z2 n > 2

S3 n = 2

Z2 n > 2

S3 n = 2

D 7 2

3
3 (2 3 3) Z2 Z2

D 8 2

3
4 (2 3 4) 1 1

D 9 2

3
5 (2 3 5) 1 1

Table A.2. Domestic curves with M = R ⊕ R and M = H ⊕ H
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Case Weights Symbol Aut X
H R

D 1 p
(p) R+× Z2

D 2 p
( p

2
)

V4

D 3
p

( p
2
2

)
V4

D 4 p1

p2

(p1 p2)
R+� V4 p1 = p2
R+× Z2 p1 �= p2

D 5 n
2

(
2 n
2 1

)
Z2

D 6 n
2

( 2 n
2 1
2 1

)
Z2

D 7 2
3

(
2 3
1 2

)
Z2

D 8 2
3

( 2 3
1 2
1 2

)
Z2

Table A.3. Domestic curves with M = C ⊕ C
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Case Weights Symbol R ⊕ R H ⊕ H

b

T 1

a

2 2
(

2 2
2 2

)( 2 2
2 2
2 2

) −

V4 t ∈ (0, 1)

V4 t ∈ (0, 1)

−

e

T 2

d

2
4

(
2 4
1 2

)(
2 4
1 2
1 2

) −

Z2

Z2

−

T 3
3 3

(
3 3
1 2

)( 3 3
1 2
1 2

) −

Z2

Z2

−

T 4 2

3
6 (2 3 6) 1 1

T 5 2

4
4 (2 4 4) Z2 Z2

T 6 3

3
3 (3 3 3) S3 S3

T 7
2 2

2

(
2 2 2
1 1 2

)
( 2 2 2

1 1 2
1 1 2

) −

Z2 t = π/2;

1
t ∈ (0, π)
t �= π/2

Z2 t = π/2;

1
t ∈ (0, π)
t �= π/2

−

T 8
2

2
2 2 (2 2 2 2)

A4 j = 0
D4 j = 1728
V4 j �= 0, 1728

A4 j = 0
D4 j = 1728
V4 j �= 0, 1728

Table A.4. Tubular curves for M = R ⊕ R and M = H ⊕ H
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Case Weights Symbol Parameter Aut Xt

H R

T 1
2 ( 2

4
2

)
t ∈ (0, π) V4

T 2

a

2

2

(
2 2
2 2

)
t ∈ (0, 1) V4

T 3

b

2

2

( 2 2
2 2
2 2

)
t ∈ (0, 1) V4

T 4

c

2 2

(
2 2
2 2
1 2

)
t ∈ (0, 1] V4 t = 1

Z2 t �= 1

T 5

d
2

4
(

2 4
1 2

)
− Z2

T 6

e
2

4

( 2 4
1 2
1 2

)
− Z2

T 7 3
3

(
3 3
1 2

)
− Z2

T 8 3
3

( 3 3
1 2
1 2

)
− Z2

T 9 2

2
2

(
2 2 2
1 1 2

)
− V4

T 10 2

2
2

(
2 2 2
1 1 2
1 1 2

)
− V4

Table A.5. Tubular curves with M = C ⊕ C
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The tubular symbols

(
2
4

)
,

(
2
2 2
2

)
(

2
4
2

)
(

2
4
4

)
,

(
2
2

2

)
(

3
3

)
,

(
3
3
3

)
(

2 2
1 3

)
(

2 2
1 3
1 3

)
(

2 2
2 2

)
,

(
2 2
2 2
2 2

)
(

2 2
2 2
1 2

)
, (2 2 | 2)

(
2 4
1 2

)
,

(
2 4
1 2
1 2

)
(

3 3
1 2

)
(

3 3
1 2
1 2

)
(2 3 6)

(2 4 4)

(3 3 3)(
2 2 2
1 1 2

)
(

2 2 2
1 1 2
1 1 2

)
(2 2 2 2)

Table B.1. The 17 equivalence classes of tubular symbols

See 0.4.5 for the definition of symbols. Two symbols are called equivalent if

they yield the same Grothendieck group with Euler form. The 17 boxes show the

17 equivalence classes. We refer to [57] for details.
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Paul Dubreil et Marie-Paul Malliavin, Proceedings, Paris 1982 (35ème Année) (Berlin-
Heidelberg-New York) (M.-P. Malliavin, ed.), Lecture Notes in Math., vol. 1029, Springer-
Verlag, 1983, pp. 120–133. MR 85j:16040

24. V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem.
Amer. Math. Soc. 6 (1976), no. 173, v+57. MR 56 #5657

25. , Normal forms of real matrices with respect to complex similarity, Linear Algebra
and Appl. 17 (1977), no. 2, 107–124. MR 57 #12552

26. , Real subspaces of a quaternion vector space, Canad. J. Math. 30 (1978), no. 6,
1228–1242. MR 80a:15033

27. , The representations of tame hereditary algebras, Representation Theory of Alge-
bras. Proceedings of the Philadelphia Conference 1976 (New York) (R. Gordon, ed.), Marcel
Dekker, 1978, pp. 329–353. Lecture Notes in Pure Appl. Math., Vol. 37. MR 58 #11021

28. , The preprojective algebra of a modulated graph, Representation Theory II (Proc.
Second Internat. Conf. Carleton Univ., Ottawa, Ont., 1979) (Berlin-Heidelberg-New York),
Lecture Notes in Math., vol. 832, Springer-Verlag, 1980, pp. 216–231. MR 83c:16022

29. , A class of bounded hereditary noetherian domains, J. Algebra 92 (1985), 311–321.
MR 86h:16021

30. P. K. Draxl, Skew fields, London Mathematical Society Lecture Note Series, vol. 81, Cam-
bridge University Press, Cambridge, 1983. MR 85a:16022

31. J.-M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur P2, Ann. Sci. École
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945 Tobias H. Jäger, The creation of strange non-chaotic attractors in non-smooth
saddle-node bifurcations, 2009

944 Yuri Kifer, Large deviations and adiabatic transitions for dynamical systems and Markov
processes in fully coupled averaging, 2009

943 István Berkes and Michel Weber, On the convergence of
∑

ckf(nkx), 2009

942 Dirk Kussin, Noncommutative curves of genus zero: Related to finite dimensional
algebras, 2009

941 Gelu Popescu, Unitary invariants in multivariable operator theory, 2009

940 Gérard Iooss and Pavel I. Plotnikov, Small divisor problem in the theory of
three-dimensional water gravity waves, 2009

939 I. D. Suprunenko, The minimal polynomials of unipotent elements in irreducible
representations of the classical groups in odd characteristic, 2009

938 Antonino Morassi and Edi Rosset, Uniqueness and stability in determining a rigid
inclusion in an elastic body, 2009

937 Skip Garibaldi, Cohomological invariants: Exceptional groups and spin groups, 2009
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931 Robert C. Dalang and Marta Sanz-Solé, Hölder-Sobolv regularity of the solution to
the stochastic wave equation in dimension three, 2009

930 Volkmar Liebscher, Random sets and invariants for (type II) continuous tensor product
systems of Hilbert spaces, 2009

929 Richard F. Bass, Xia Chen, and Jay Rosen, Moderate deviations for the range of
planar random walks, 2009

928 Ulrich Bunke, Index theory, eta forms, and Deligne cohomology, 2009

927 N. Chernov and D. Dolgopyat, Brownian Brownian motion-I, 2009

926 Riccardo Benedetti and Francesco Bonsante, Canonical wick rotations in
3-dimensional gravity, 2009

925 Sergey Zelik and Alexander Mielke, Multi-pulse evolution and space-time chaos in
dissipative systems, 2009

924 Pierre-Emmanuel Caprace, “Abstract” homomorphisms of split Kac-Moody groups,
2009

923 Michael Jöllenbeck and Volkmar Welker, Minimal resolutions via algebraic discrete
Morse theory, 2009

922 Ph. Barbe and W. P. McCormick, Asymptotic expansions for infinite weighted
convolutions of heavy tail distributions and applications, 2009

921 Thomas Lehmkuhl, Compactification of the Drinfeld modular surfaces, 2009

920 Georgia Benkart, Thomas Gregory, and Alexander Premet, The recognition
theorem for graded Lie algebras in prime characteristic, 2009

919 Roelof W. Bruggeman and Roberto J. Miatello, Sum formula for SL2 over a totally
real number field, 2009



TITLES IN THIS SERIES

918 Jonathan Brundan and Alexander Kleshchev, Representations of shifted Yangians
and finite W -algebras, 2008

917 Salah-Eldin A. Mohammed, Tusheng Zhang, and Huaizhong Zhao, The stable
manifold theorem for semilinear stochastic evolution equations and stochastic partial
differential equations, 2008

916 Yoshikata Kida, The mapping class group from the viewpoint of measure equivalence
theory, 2008

915 Sergiu Aizicovici, Nikolaos S. Papageorgiou, and Vasile Staicu, Degree theory for
operators of monotone type and nonlinear elliptic equations with inequality constraints,
2008

914 E. Shargorodsky and J. F. Toland, Bernoulli free-boundary problems, 2008

913 Ethan Akin, Joseph Auslander, and Eli Glasner, The topological dynamics of Ellis
actions, 2008

912 Igor Chueshov and Irena Lasiecka, Long-time behavior of second order evolution
equations with nonlinear damping, 2008

911 John Locker, Eigenvalues and completeness for regular and simply irregular two-point
differential operators, 2008

910 Joel Friedman, A proof of Alon’s second eigenvalue conjecture and related problems,
2008

909 Cameron McA. Gordon and Ying-Qing Wu, Toroidal Dehn fillings on hyperbolic
3-manifolds, 2008

908 J.-L. Waldspurger, L’endoscopie tordue n’est pas si tordue, 2008

907 Yuanhua Wang and Fei Xu, Spinor genera in characteristic 2, 2008
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894 Martin Dindoš, Hardy spaces and potential theory on C1 domains in Riemannian
manifolds, 2008

For a complete list of titles in this series, visit the
AMS Bookstore at www.ams.org/bookstore/.



MEMO/201/942 www.ams.org
AMS on the Web


