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Abstra
t. Let � be a tubular algebra over an arbitrary base �eld. We study

the Grothendie
k group K

0

(�), endowed with the Euler form, and its automor-

phism group Aut(K

0

(�)) on a purely K-theoreti
al level as in [7℄. Our results

serve as tools for 
lassifying the separating tubular families of tubular algebras

as in the example [5℄ and for determining the automorphism group Aut(D

b

(�))

of the derived 
ategory of �.

1. Introdu
tion

This arti
le is 
on
erned with the Grothendie
k group (endowed with the Euler

bilinear form) of a 
anoni
al algebra � over a non-algebrai
ally 
losed �eld (as de-

�ned by Ringel and Crawley-Boevey [13℄), in parti
ular with those of tubular type

(
ompare [7, 9℄). All algebras whi
h are derived-equivalent to � are also treated

by our investigation, in parti
ular tubular algebras (= 
on
ealed-
anoni
al alge-

bras ([9℄) of tubular type) and derived-tubular algebras. This follows from the fa
t

that an equivalen
e (of triangulated 
ategories) of the derived 
ategories indu
es an

isomorphism of the Grothendie
k groups preserving the Euler forms (
ompare [3℄).

The main aim of this paper is to develop the K-theoreti
al ba
kground whi
h is

needed to prove some results in the representation theory of tubular algebras and


ertain e�e
ts whi
h o

ur when the base �eld is not algebrai
ally 
losed.

A tubular algebra � admits a rational family of separating tubular families of

stable tubes. Over an algebrai
ally 
losed �eld all these stable separating tubular

families for � are equivalent to ea
h other as 
ategories [12, 11℄. This is not true

in general over a non-algebrai
ally 
losed �eld. In fa
t, in [5℄ we gave an example

of a tubular 
anoni
al algebra over the real numbers whi
h admits two equivalen
e


lasses of separating tubular families of stable tubes. The methods and results of

the present paper allow to prove similar results for arbitrary tubular algebras.

Furthermore we give an example whi
h shows that the distin
tion lemma in [1, 2℄

is not valid over non-algebrai
ally 
losed �elds.

We also determine the group of automorphisms of the Grothendie
k group of

� whi
h preserve the Euler form. This is the �rst step of des
ribing the automor-

phism group of the derived 
ategory, 
ompare [10℄. Starting point of our dis
ussion

is [7℄. Furthermore, we 
orre
t some errors whi
h appeared in that arti
le. Some

results in our paper are part of the authors do
toral thesis [6℄. The author would

like to thank Professor Helmut Lenzing for many helpful dis
ussions.
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2. Canoni
al bases and invarian
e of tubular symbols

We re
all some de�nitions from [7℄. A bilinear group is a �nitely generated

abelian group V equipped with a (non-symmetri
) bilinear form

h�;�i : V � V �! Z

and an automorphism � : V �! V (
alled Coxeter transformation) su
h that for

all x, y 2 V we have

hy;xi = �hx; �yi:

If additionally V is non-degenerate, then V is 
alled bilinear latti
e. We always

assume that V is normalized , that is hV; V i = Z. Morphisms between bilinear

groups are group homomorphisms whi
h preserve the bilinear form and 
ommute

with the Coxeter transformation.

Let V = (V; h�;�i; �) be a bilinear group, and denote by KernV the subgroup


onsisting of all x 2 V su
h that hx; V i = 0 (equivalently, hV;xi = 0). We 
all a

linear map r : V �! Z a rank or rank fun
tion, if r is surje
tive and 
ompatible

with the Coxeter transformation, that is r = r Æ � . The radi
al of V is de�ned

as RadV = fx 2 V j �x = xg. If w is in RadV su
h that w 62 KernV , and


 := [Z : hV;wi℄, then rk

w

:=

1




h�;wi de�nes a rank fun
tion, 
alled w-rank.

Assume now that V is a bilinear latti
e. Dire
t summands of RadV of rank 1

are 
alled 1-tubes. Let r be a rank fun
tion. By s
alar extension with Q we get

v 2 V whi
h is generator of a 1-tube su
h that r = rk

v

. Hen
e we have a bije
tion

between rank fun
tions and generators of 1-tubes.

Two ranks r and r

0

on V are 
alled similar , if there is � 2 AutV su
h that

r

0

= r�. If � 2 AutV and Zw and Zw

0

are 1-tubes, then rk

w

= rk

w

0

� if and

only if �w

0

= w. If V and V

0

are bilinear latti
es and w 2 V and w

0

2 V

0

are distinguished generators of 1-tubes, then an isomorphism between bilinear

latti
es � : V �! V

0

is 
alled rank isomorphism if �w = w

0

. Denote by Aut

w

V

the subgroup of Aut V 
onsisting of automorphisms � su
h that �(w) = w.

Let V be a bilinear group. An element u 2 V is 
alled root if hu;ui > 0 and

hu;xi

hu;ui

2 Z for all x 2 V . Let u 2 V be a root with � -period p � 2. We 
all

u; �u; : : : ; �

p�1

u

a root basis, if these elements are linearly independent over Z and

h�

i

u; �

j

ui =

8

>

<

>

:

hu;ui j � imod p;

�hu;ui j � i+ 1mod p;

0 else:

A subgroup T � V is 
alled p-tube (p � 2), if it is generated by a root basis of

length p. A p-tube T and a p

0

-tube T

0

are 
alled orthogonal if hT; T

0

i = 0.

Canoni
al (bilinear) latti
es are de�ned in [7℄. They serve as model for Grothen-

die
k groups of 
anoni
al algebras (ex
eptional 
urves [8℄, resp.). The following

proposition is a 
onverse of [7, Prop. 7.7℄ and 
an be viewed as de�nition for


anoni
al latti
es. We omit the proof whi
h is straightforward.
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Proposition 2.1. Let V be a (normalized) bilinear group and

B

w

: a; �

j

s

i

(1 � i � t; 0 � j � p

i

� 2); w

a system of generators of V having the following properties (1){(4):

(1) w 2 RadV , w 62 KernV .

(2) a is root of w-rank 1.

(3) The s

i

are roots of w-rank 0 and their � -orbits form root bases of pairwise

orthogonal p

i

-tubes.

(4) ha; s

i

i > 0 and ha; �

j

s

i

i = 0 for 0 < j � p

i

�1; moreover, ha; s

i

i=ha;wi 2 Z.

Under these assumptions the following holds true: the numbers

� := ha;ai; " :=

ha;wi

ha;ai

; e

i

:=

ha; s

i

i

hs

i

; s

i

i

; f

i

:=

1

"

ha; s

i

i

ha;ai

are positive integers, B

w

is a Z-basis, h�;�i is non-degenerate, " 2 f1; 2g, and

(V;w) is a 
anoni
al bilinear latti
e with symbol (
ompare [7, Def. 7.6℄)

(2.1) �[V;w℄ =

0

�

p

1

; : : : ; p

t

d

1

; : : : ; d

t

"

f

1

; : : : ; f

t

1

A

;

where d

i

= e

i

f

i

.

It is shown in [9℄ that the Grothendie
k group of a 
on
ealed-
anoni
al algebra

has a basis as in the proposition (in parti
ular this is true for a tubular algebra).

Let V be a 
anoni
al latti
e as in the proposition. We 
all (
ontrary to [7℄) the

basis B

w


anoni
al or w-
anoni
al and write it usually in the form

(2.2) a j s

1

; �s

1

; : : : ; �

p

1

�2

s

1

j � � � j s

t

; �s

t

; : : : ; �

p

t

�2

s

t

j w

We 
all the symbol (2.1) more pre
isely w-symbol. A 
anoni
al latti
e is thus a

bilinear group admitting a 
anoni
al basis. Note, that the number � as de�ned

above 
an be 
al
ulated from the symbol, sin
e it is the smallest positive integer

su
h that �

"f

i

e

i

2 Z for i = 1; : : : ; t, see [7, Prop. 7.7℄. Let p = l
m(p

1

; : : : ; p

t

) and

Æ[V ℄ := p

�

t

X

i=1

e

i

f

i

�

1�

1

p

i

�

�

2

"

�

:

Then V is 
alled domesti
 (resp. tubular, wild) if Æ[V ℄ < 0 (= 0, > 0, resp.)

(
ompare [7℄ and also [9℄ for further 
hara
terizations).

We are interested in the question whether the numbers �, ", e

i

, f

i

(hen
e the

symbol) are invariants of a 
anoni
al latti
e. That is, given a 
anoni
al latti
e

and two 
anoni
al bases, are the symbols de�ned by these 
anoni
al bases (up to

permutation) the same? This is not true in general, sin
e there is a 
ounterexample

in the wild 
ase (see Example 4.3), and also not true for some tubular 
ases, as

we will see. But we show, that the symbol is an invariant of a tubular 
anoni
al

latti
e with respe
t to rank isomorphisms.

Let V be a bilinear latti
e and B be a Z-basis of V . We 
all the matrix C

asso
iated with the bilinear form relative to the basis B a Cartan matrix . If � is

the matrix asso
iated with the Coxeter transformation � with respe
t to B, then

we have the relation � = �C

�1

C

t

(see [7℄).
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Lemma 2.2. Let (V;w) be a 
anoni
al latti
e. Under the notations above the

numbers t, Æ[V ℄, the determinant of a Cartan matrix and the weights p

1

; : : : ; p

t

(up to permutation) are invariants with respe
t to isomorphisms of bilinear groups.

Moreover, the produ
t �" is an invariant with respe
t to rank isomorphism; it


oin
ides with the index [Z : hV;wi℄.

Proof. The invarian
e of the weights follows from 
onsidering the Coxeter poly-

nomial, see [7, Prop. 7.8℄. In order to see the invarian
e of Æ[V ℄ distinguish the

tubular from the non-tubular 
ase. The tubular 
ase is 
lear, sin
e tubularity

means that the radi
al of V is of rank two [7, 10.3℄. If V is non-tubular, then

by [7, 4.3+8.2℄ Æ[V ℄ is the unique non-zero integer Æ, su
h that �

p

= �

Æ

0

, where �

0

is the shift automorphism asso
iated to w, and w generates the radi
al of V . �

Let (V;w) be a 
anoni
al latti
e with basis as in Prop. 2.1. Let u 2 V be a

root of w-rank 0. De�ne e(u) :=

ha;ui

hu;ui

and f(u) :=

1

"

ha;ui

ha;ai

. We 
all the fra
tion

e(u)

f(u)

=

�"

hu;ui

the root quotient of u.

Lemma 2.3. With the de�nitions from Prop. 2.1, let T

i

be the tube generated by

the � -orbit of s

i

(i = 1; : : : ; t). Let u 2 V be a root of w-rank 0. Then there is

i 2 f1; : : : ; tg and n 2 Z su
h that n

e

i

f

i

2 Z and u = u

0

+nw, where u

0

is a root in

T

i

; the root quotient of u is

e

i

f

i

. If, moreover, the � -orbit of u forms a root basis,

then there is some j su
h that (after possibly 
hanging n) u = ��

j

s

i

+ nw.

Proof. There is a representation u =

P

t

i=1

u

i

+nw where u

i

2 T

i

and n 2 Z. Sin
e

u is a root, the number hu;ui =

P

t

i=1

hu

i

;u

i

i divides all the non-negative integers

hu;u

i

i = hu

i

;u

i

i, hen
e u = u

i

+ nw for some i. Therefore, u

0

= u

i

is a root in

T

i

and hen
e also in V . Moreover, hu;ui = hu

0

;u

0

i = hs

i

; s

i

i ([7, Prop. 5.2℄). We

get

e(u)

f(u)

=

�"

hs

i

;s

i

i

=

e

i

f

i

. It is easy to 
he
k that if v is a root in T

i

, then v + nw

is a root if and only if n

e

i

f

i

2 Z. Moreover, if the � -orbit of u forms a root basis,

then also the � -orbit of u

0

forms a root basis and hen
e u

0

is a root of length �1

(for the notion of length see [7℄). �

Theorem 2.4. The symbol is a 
omplete invariant of a tubular 
anoni
al latti
e

with respe
t to rank isomorphisms.

Proof. The proof is based on the analysis of the list of tubular symbols in [7℄, see

also Table 1. Tubular latti
es whi
h are rank isomorphi
 share the same sequen
e

of weights and the same determinant of the Cartan matri
es. In some 
ases we get

pairs of symbols (Table 1), where these data 
oin
ide. In these 
ases the members

of the pairs do not lead to rank isomorphi
 latti
es sin
e either the numbers �"

do not 
oin
ide, or (in the 
ase

 

2 2

2 2

1 2

!

and (2 2 j 2)) the root quotients do

not 
oin
ide (whi
h are

1

2

, 2 in the �rst and 1, 1 in the se
ond 
ase) (see also

Remark 8.2 (3)).

To show 
ompleteness, let (V;w) and (V

0

;w

0

) be tubular 
anoni
al latti
es with

the same symbols. Then we have 
anoni
al bases

B

w

: a; �

j

s

i

(1 � i � t; 0 � j � p

i

� 2); w
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of V and

B

w

0

: a

0

; �

j

s

0

i

(1 � i � t; 0 � j � p

i

� 2); w

0

of V

0

as in Prop. 2.1. It is then possible to de�ne a rank isomorphism � on these

bases in the obvious way whi
h preserves the bilinear form sin
e the symbols are

the same. �

With the same arguments one shows that the symbol is a 
omplete invariant of

a domesti
 
anoni
al latti
e with respe
t to isomorphisms.

3. Invarian
e of tubular de
ompositions

Lemma 3.1. Let (V;w) be a non-wild (that is, domesti
 or tubular) 
anoni
al

latti
e, and let � 2 Aut

w

V . Let (2.2) be a 
anoni
al basis and T

i

be the tube

generated by the � -orbit of s

i

(i = 1; : : : ; t). Then there is a permutation � 2 S

t

su
h that for ea
h i 2 f1; : : : ; tg we have �(T

i

) = T

�(i)

.

Proof. By Lemma 2.3 there is a permutation � 2 S

t

su
h that �(s

i

) = ��

k

i

s

�(i)

+

n

i

w, where n

i

2 Z and n

i

e

�(i)

f

�(i)

2 Z. Now n

i

2 Zf

�(i)

(whi
h in 
ase that the

symbol is di�erent from

0

�

2

4

2

1

A

easily follows from the fa
t that then ea
h e

i

= 1 or

f

i

= 1; applying � to s

1

+ �s

1

= 2w and involving �(w) = w shows the assertion

also in that 
ase). This implies �(s

i

) 2 T

�(i)

. �

Example 3.2. The lemma is not true in general for wild 
anoni
al latti
es. For

example, 
onsider the wild symbol

0

�

4

4

2

1

A

(whi
h is easily seen to be realizable as

Grothendie
k group of a 
anoni
al algebra over the real numbers R), de�ned by

the 
anoni
al basis a j s; �s; �

2

s j w. The 
anoni
al basis a � 3s � 2�s � �

2

s j

�s+w;��s+w;��

2

s+w j w de�nes the same symbol. The tubes generated by

the � -orbits of s and �s+w, resp., are distin
t.

Remark 3.3. The pre
eding lemma provides a proof (in the non-wild 
ases) of [7,

Thm. 12.2℄. Note that [7, Prop. 11.4℄ whi
h is used there does not hold (even in

the tubular 
ase): for example, let (V;w) be the tubular 
anoni
al latti
e with


anoni
al basis a j s

1

j w and symbol

 

2

4

2

!

. Then the � -orbits of s

1

and s

1

+w,

resp., generate two di�erent tubes of elements of rank zero. Another obstru
tion

is treated in se
tion 7.

4. Further invariants

In this se
tion we do not restri
t to tubular 
anoni
al latti
es. We show that

the numbers � and " are invariants (up to rank isomorphism). By Lemma 2.2 we

only know that the produ
t �" is an invariant.

In the 
anoni
al latti
e (V;w) we �x a 
anoni
al basis B as in (2.2) whi
h

de�nes a symbol (2.1) and assume that we have another w-
anoni
al basis

e

B. By
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Lemma 2.3, after slightly 
hanging

e

B we get a w-
anoni
al basis B

0

, yielding (up

to permutation) the same symbol as

e

B, and whi
h is of the form

B

0

: a

0

j ��

j

s

i

+ n

i

w (1 � i � t; 0 � j � p

i

� 2) j w;

where a

0

has the shape

a

0

= a+

t

X

i=1

p

i

�2

X

j=0

�

ij

�

j

s

i

:

Lemma 4.1. Under the pre
eding assumptions we have

�

ij

= �(p

i

� 1� j)n

i

e

i

f

i

and

(4.1) ha

0

;a

0

i = ha;ai+ �"

t

X

i=1

�(p

i

� 1)n

i

e

i

+ �"

t

X

i=1

n

2

i

e

i

f

i

p

i

(p

i

� 1)

2

:

Proof. Exploit ha

0

;��

j

s

i

+ n

i

wi = 0 (j = 1; : : : ; p

i

� 1). �

Proposition 4.2. The numbers � and " are invariants of a 
anoni
al latti
e (V;w)

with respe
t to rank isomorphisms.

Proof. Denote �

0

= ha

0

;a

0

i and "

0

=

ha

0

;wi

ha

0

;a

0

i

. The pre
eding lemma shows that

ha;ai divides ha

0

;a

0

i. Sin
e �" = �

0

"

0

, the formula also shows that ha

0

;a

0

i divides

ha;ai, hen
e � = �

0

and then also " = "

0

. �

Example 4.3. We show, that a w-symbol in the wild 
ase need not to be unique.

Consider the 
anoni
al latti
e (V;w) withw-
anoni
al basis a j s

1

j s

2

j s

3

j s

4

j w;

whi
h de�nes the symbol

0

�

2 2 2 2

1 1 25 25 "

1 1 5 5

1

A

. An easy 
al
ulation shows that

a+ s

1

+ s

2

� s

3

j s

1

+w j s

2

+w j s

3

�w j s

4

j w

is also a w-
anoni
al basis whi
h de�nes the symbol

0

�

2 2 2 2

9 9 9 25 "

3 3 3 5

1

A

. This is

a 
ounterexample of the result [7, Thm. 13.1℄.

5. Slopes and rank fun
tions

Let (V;w) be a tubular 
anoni
al latti
e with rank rk = rk

w

, let p be the least


ommon multiple of the weights, and let a 2 V be a root of rank 1 o

urring in a

w-
anoni
al basis.

Lemma 5.1. Let u :=

P

p�1

j=0

�

j

a. Then u, w forms a Q-basis of Q 
RadV .

Proof. By [7, Prop. 10.3℄ RadV is free of rank 2, hen
e Q 
 RadV is two-

dimensional over Q . Sin
e rku = p and rkw = 0 the elements u and w are

linearly independent. �
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Remark 5.2. In 
ase

�

2

2

2

�

the elements

1

2

(u � w), w form a Z-basis of

RadV . In all other tubular 
ases RadV has a Z-basis of the form

1




u, w, where


 2 f1; 2; 3g. Compare the fourth 
olumn of Table 1.

Denote by Q the disjoint union Q [ f1g, where 1 will be 
onsidered as \fra
-

tion"

1

0

. Let q 2 Q , q =

d

r

su
h that (d; r) = 1, r � 0. De�ne
e
w

q

:= r � u + d �w

and w

q

su
h that Zw

q

is a 1-tube and
e
w

q

2 Nw

q

.

Proposition 5.3. (1) The 1-tubes of (V;w) are exa
tly the Zw

q

(q 2 Q ).

(2) The rank fun
tions (up to sign) are in one to one 
orresponden
e with the

elements q 2 Q .

Proof. It is not diÆ
ult to show that the map q 7! Zw

q

is a bije
tion between Q

and 1-tubes. �

The automorphism group of RadV 
an be identi�ed with the modular group

� = SL

2

(Z). By restri
tion ea
h � 2 AutV indu
es an element in �.

Denote by P(Rad V ) the set of all dire
t summands of rank 1 of RadV , whi
h

we also identify with Q . Ea
h � 2 AutV (or ea
h � 2 �) indu
es a bije
tive map

� on P(RadV ), whi
h we 
onsider as element of the proje
tive modular group � =

PSL

2

(Z). In this way the group AutV a
ts on the set Q (via �(w

q

) = �w

�(q)

).

Let q, q

0

2 Q . We 
all q and q

0

equivalent if there is a � 2 AutV su
h that

�w

q

= w

q

0

. We 
all the 
lasses of the indu
ed equivalen
e relation on Q slope


lasses.

6. Shift automorphisms

Let (V;w) be a tubular 
anoni
al latti
e with symbol (2.1) whi
h is de�ned by

a �xed w-
anoni
al basis (2.2) and let p = l
m(p

1

; : : : ; p

t

). For all x, y 2 V let

hhx;yii :=

p�1

X

j=0

h�

j

x;yi:

Let rk = rk

w

, and de�ne a degree fun
tion deg : V �! Z by

deg(x) =

1

�"

hha;xii

for all x 2 V . Then we 
an de�ne the slope of elements x 2 V , for whi
h not

both degx and rkx are zero, by �(x) =

deg(x)

rk(x)

2 Q . Obviously, �(w

q

) = q for all

q 2 Q . (The slope depends on the 
hoi
e of deg (resp. a) and rk (resp. w).) We

de�ne 
ertain shift automorphisms (as in [7℄) and study their e�e
t on the slope.

For the general notion of a shift automorphism asso
iated to an arbitrary tube we

refer to [7℄.

Let

(6.1) �

0

(x) = x�

hw;xi

�"

w:

We have deg �

0

(x) = deg x+ p rkx, rk�

0

(x) = rkx and ��

0

(x) = �x+ p.
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For i = 1; : : : ; t let

(6.2) �

i

(x) = x�

p

i

�1

X

j=0

h�

j

s

i

;xi

hs

i

; s

i

i

�

j

s

i

:

We have deg �

i

(x) = deg x+ d

i

p

p

i

rkx, rk�

i

(x) = rkx and ��

i

(x) = �x+ d

i

p

p

i

.

Remark. It is easy to see that the � -orbit of a forms a root basis of a p-tube.

Let

(6.3) �

a

(x) = x�

p�1

X

j=0

h�

j

a;xi

ha;ai

�

j

a:

We have deg �

a

(x) = deg x, rk�

a

(x) = rkx� "deg x and ��

a

(x) =

�x

1�"�x

.

Ea
h automorphism � 2 AutV indu
es a bije
tive map � from Q into itself. We


onsider the subgroup G of � generated by these maps. Our aim is to 
al
ulate

the (number of) orbits of the a
tion of G on Q . Consider the subgroup S of G

whi
h is generated by the indu
ed maps of �

0

, �

a

and all the �

i

(i = 1; : : : ; t).

Studying the list of tubular symbols in [7℄ (see also Table 1) we see that S is

already generated by two of these maps, denoted by � and �, where the following

�ve 
ases 
an o

ur:

(1) �(q) = q + 1; �(q) =

q

1+q

;

(2) �(q) = q + 2; �(q) =

q

1+q

;

(3) �(q) = q + 3; �(q) =

q

1+q

;

(4) �(q) = q + 1; �(q) =

q

1+2q

;

(5) �(q) = q + 2; �(q) =

q

1+2q

.

Lemma 6.1. Let S = h�; �i. In ea
h of the �ve 
ases the orbits of the a
tion of

S on Q are the following

1: Q

2: f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg

3: f

a

b

j a 2 Z; b 2 N; a � 0mod 3g; f

a

b

j a 2 Z; b 2 N; a 6� 0mod 3g

4: f

a

b

j a 2 N; b 2 Z; b eveng; f

a

b

j a 2 N; b 2 Z; b oddg

5: f

a

b

j a 2 Z; b 2 N; a odd; b oddg; f

a

b

j a 2 Z; b 2 N; a odd; b eveng;

f

a

b

j a 2 Z; b 2 N; a even; b oddg:

Here, the notation

a

b

ta
itly means that a and b are 
oprime.

Proof. Denote by R and S the generators

�

1 0

1 1

�

;

�

1 1

0 1

�

of �, and by R, S

their images in �, resp. It is suÆ
ient to determine the number of orbits of the

a
tion of the subgroups hR;Si = �, hR;S

2

i, hR;S

3

i, hR

2

; Si, and hR

2

; S

2

i, resp.,

of � on Q , in other words the number of (equivalen
e 
lasses of) 
usps of these

subgroups. For this see [4, III. x1℄. (It is easily proved, that hR

2

; S

2

i = �(2) and

hR;S

3

i = �

1

(3) = �

0

(3) in the notation of [4℄.) �
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7. Roots with no defined slope

Let (V;w) be a tubular 
anoni
al latti
e with 
anoni
al basis (2.2) and rank

rk = rk

w

=

1

�"

h�;wi and degree deg =

1

�"

hha;�ii. Let x 2 V . We say that

x has a de�ned slope, if rkx 6= 0 or deg x 6= 0. Otherwise we say that x has

no de�ned slope. This de�nition is independent from the 
hoi
e of our rank and

degree, sin
e by Lemma 5.1 it is easy to see, that x has no de�ned slope if and

only if x 2 (RadV )

?

(that is, hy;xi = 0 for all y 2 RadV ). From this it also

follows that if � 2 AutV then x has a de�ned slope if and only if �x has a de�ned

slope.

Example 7.1. Assume that the symbol of (V;w) is

0

�

2

4

2

1

A

, de�ned by the 
anoni
al

basis a j s

1

j w. Then x := s

1

�w is a root with rkx = 0 and deg x = 0, hen
e has

no de�ned slope. If q is the quadrati
 form q : V �! Z de�ned by q(v) = hv;vi,

then

x 2 q

�1

(1) \ (RadV )

?

:

This is an example of a situation where the 
ondition of the distin
tion lemma

in [1, 2℄ is not ful�lled.

Lemma 7.2. The tubular symbol

0

�

2

4

2

1

A

is the only one su
h that there exists a root

whi
h has no de�ned slope.

Proof. By Lemma 2.3 ea
h root of rank zero is of the form x = �

P

m+l

j=m

�

j

s

i

+nw,

where p

i

does not divide l + 1 and n

e

i

f

i

2 Z. Then deg x = (l + 1)f

i

p

p

i

+ np

(p = l
m(p

1

; : : : ; p

t

)). The proof of Lemma 3.1 shows that in all tubular 
ases

di�erent from

0

�

2

4

2

1

A

we have n 2 Zf

i

. Therefore, deg x = 0 is only possible in this

spe
ial 
ase. �

8. Slope 
lasses of tubular symbols

Re
all that a (tubular) symbol is a s
heme of natural numbers whi
h is de�ned

by a 
anoni
al basis of a (tubular) 
anoni
al latti
e. We 
all two symbols equiva-

lent , if it is possible to realize them by two 
anoni
al bases in the same 
anoni
al

latti
e. Let V be a tubular 
anoni
al latti
e.

Theorem 8.1. Table 1 shows the 17 equivalen
e 
lasses of the tubular symbols.

There are at most 2 slope 
lasses, ea
h lying dense in Q ; the number of slope


lasses 
oin
ides with the number of symbols lying in one equivalen
e 
lass. There

is a subgroup U of AutV , generated by shift automorphisms asso
iated to elements

whi
h are listed in the third 
olumn of the table, su
h that U a
ts transitively on

the slope 
lasses.

Remarks 8.2. (1) The theorem, whi
h will be proved in se
tion 10, 
an be used

to 
lassify the separating tubular families over a tubular algebra similarly to the

example des
ribed in [5℄; this will be published in a forth
oming paper.
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symbols hs

i

; s

i

i gen. of U rad.-basis tH S

�[V ℄

U

�

2

4

�

;

 

2

2 2

2

!

1

4

a;w

a; s

1

;u� 2w

1

2

u;w

u;w

Z

2

1 �

2

 

2

4

2

!

1 a;w;

u+2w

2

1

2

u;w Z

2

1 �

 

2

4

4

!

;

�

2

2

2

�

4

1

a;w

s

1

;

u+w

2

u;w

u�w

2

;w

Z

2

1 �

2

�

3

3

�

;

 

3

3

3

!

1

3

a; s

1

1

3

u;w

u;w

Z

3

1 �

3

�

2 2

1 3

�

3; 1 a; s

1

u;w Z

2

1 �

 

2 2

1 3

1 3

!

1; 3 a; s

1

u;w Z

2

1 �

�

2 2

2 2

�

;

 

2 2

2 2

2 2

!

1; 1

2; 2

a; s

1

1

2

u;w

u;w

Z

2

� Z

2

Z

2

�

2

 

2 2

2 2

1 2

!

; (2 2 j 2)

1; 4

2; 2

a; s

1

u;w

Z

2

� Z

2

Z

2

1

Z

2

�

2

�

2 4

1 2

�

;

 

2 4

1 2

1 2

!

2; 1

1; 2

a; s

2

1

2

u;w

u;w

Z

4

1 �

2

�

3 3

1 2

�

2; 1 a; s

1

u;w Z

3

1 �

 

3 3

1 2

1 2

!

1; 2 a; s

1

u;w Z

3

1 �

(2 3 6) 1; 1; 1 a; s

3

u;w Z

2

� Z

3

1 �

(2 4 4) 1; 1; 1 a; s

2

u;w Z

2

� Z

4

Z

2

�

(3 3 3) 1; 1; 1 a; s

1

u;w Z

3

� Z

3

S

3

�

�

2 2 2

1 1 2

�

2; 2; 1 a; s

1

u;w Z

2

� Z

2

Z

2

�

 

2 2 2

1 1 2

1 1 2

!

1; 1; 2 a; s

1

u;w Z

2

� Z

2

Z

2

�

(2 2 2 2) 1; 1; 1; 1 a; s

1

u;w (Z

2

)

3

S

4

�

Table 1. Classes of tubular symbols

(2) It 
an be shown [6℄ that ea
h tubular symbol 
an be realized as Grothen-

die
k group of a tubular 
anoni
al algebra (or of a tubular ex
eptional 
urve) over
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some �eld of 
hara
teristi
 zero. This 
an be done by inserting weights in suitable

simple regular representations of suitable tame bimodules as des
ribed in [8℄.

(3) The se
ond 
olumn of Table 1 shows the lists of numbers hs

1

; s

1

i; : : : ; hs

t

; s

t

i.

(For ea
h pair of symbols, the upper (lower) list of numbers is asso
iated to the

left (right, resp.) symbol.) We see that two equivalent but di�erent symbols 
an

be distinguished by these lists.

Corollary 8.3. Let U be the subgroup of AutV as in Theorem 8.1. Then

f� j � 2 AutV g = f� j � 2 Ug:

The proof will be given in se
tion 11.

9. The automorphism groups of tubular symbols

Denote by U the group as in Corollary 8.3, and denote by � : AutV �! U the

map � 7! �. The group U 
an be 
onsidered as subgroup of � = PSL

2

(Z). More

pre
isely, easy 
al
ulations (using the Z-basis of RadV given in Table 1, fourth


olumn) show that U is of the form �, �

2

:= hR;S

2

i (or hR

2

; Si) or �

3

:= hR;S

3

i

(or hR

3

; Si), see Table 1. These groups 
oin
ide with the well-known (proje
tive)


ongruen
e modular groups �, �

0

(2) (or �

0

(2)) and �

0

(3) (or �

0

(3)) resp. (and

hen
e are subgroups of � of index 1, 3 or 4, resp.), 
ompare [4℄.

By [7, Prop. 12.1℄ the subgroup of AutV whi
h is generated by the shift auto-

morphisms �

0

, �

1

; : : : ; �

t

from se
tion 6 is isomorphi
 to the abelian group L(p;d)

on generators ~x

0

; : : : ; ~x

t

with relations p

i

~x

i

= d

i

~x

0

for 1 � i � t. As in [7℄ we

denote by S

�[V ℄

the subgroup of the symmetri
 group S

t


onsisting of all permu-

tations � preserving the symbol data, that is, satisfying p

i

= p

�(i)

, d

i

= d

�(i)

and

f

i

= f

�(i)

for all i = 1; : : : ; t. Denote by h�1i the subgroup of AutV generated by

the negative identity whi
h is of order 2.

Theorem 9.1. Let V be a tubular 
anoni
al latti
e and let U be the subgroup of

AutV as in Theorem 8.1. Let tH be the torsion group of the group H = L(p;d).

Then there is an exa
t sequen
e

(9.1)

1

h�1i � tH � S

�[V ℄

AutV

�

U

1:

Proof. It is suÆ
ient to show that h�1i � tH � S

�[V ℄


oin
ides with the kernel of �.

This follows as in the proof of [7, Cor. 12.4℄ (
ompare Remark 3.3). �

The groups tH, S

�[V ℄

and U in ea
h of the tubular 
ases are listed in Table 1.

10. Proof of Theorem 8.1

We treat ea
h of the 23 tubular 
ases (whi
h are listed in [7℄), and �x a 
anoni
al

basis (2.2). First we de�ne two shift automorphisms su
h that the subgroup S of

AutV generated by them a
ts on Q with the orbits whi
h are given in Lemma 6.1.

Then we show that either a) these orbits already 
oin
ide with the slope 
lasses

(by showing that the w

q

-symbols (q-symbols for short) for di�erent orbits are

distin
t), or b) that we get the slope 
lasses as orbits in Q of the a
tion of a

subgroup S

0

of AutV whi
h arises from S by adding a further shift automorphism

(by using then the same argument as in 
ase a)). Of 
ourse, it is suÆ
ient to
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determine q-symbols only for representatives q for ea
h orbit. We get these q-

symbols by 
al
ulating a w

q

-
anoni
al basis B

q

. (The 1-symbol is always given

by the given 
anoni
al basis (2.2).)

In the 
ases

�

2 2

1 3

�

,

0

�

2 2

1 3

1 3

1

A

,

�

3 3

1 2

�

,

0

�

3 3

1 2

1 2

1

A

, (2 3 6), (2 4 4), (3 3 3),

�

2 2 2

1 1 2

�

,

0

�

2 2 2

1 1 2

1 1 2

1

A

and (2 2 2 2) the shifts asso
iated to a and one of the s

i

yield the 
ase 1 from se
tion 6. Hen
e there is only one slope 
lass in these 
ases,

namely Q .

10.1. The 
ase

�

2

4

�

. Shifts at a and w yield the 
ase 2 from se
tion 6, hen
e

there are at most 2 slope 
lasses with representatives q = 0 and q =1, resp. For

the representative q = 0 we have the 
anoni
al basis B

0

: �s

1

j �a j

1

2

u; and thus

get the 0-symbol

0

�

2

2 2

2

1

A

.

By 2.4 there are exa
tly 2 slope 
lasses, namely

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.2. The 
ase

0

�

2

2 2

2

1

A

. Shifts at a and s

1

(or w) yield the 
ase 5 from

se
tion 6, hen
e there are at most 3 slope 
lasses with representatives q = 0, q = 1

and q =1, resp. The 
anoni
al basis B

0

: �s

1

j �a j u gives the 0-symbol

�

2

4

�

.

The 
anoni
al basis B

1

: a j 2a+w j u+w gives the 1-symbol whi
h 
oin
ides

with the 1-symbol.

Shift at the 1-tube whi
h is generated by u� 2w and de�ned by

�

u�2w

(x) = x�

hu� 2w;xi

4

(u� 2w)

indu
es on the level of the slopes the map q 7!

3q+4

�q�1

and therefore 1 and 1 lie in

the same slope 
lass. Hen
e we have pre
isely 2 slope 
lasses:

f

a

b

j a 2 Z; b 2 N; a oddg; f

a

b

j a 2 Z; b 2 N; a even; b oddg:

10.3. The 
ase

0

�

2

4

2

1

A

. Shifts at a and w yield the 
ase 2 from se
tion 6, hen
e

there are at most 2 slope 
lasses with representatives q = 0 and q =1, resp. The


anoni
al basis B

0

: �s

1

j �a j

1

2

u gives the 0-symbol whi
h 
oin
ides with the

1-symbol.

Shift at the 1-tube whi
h is generated by

1

2

(u+ 2w) and de�ned by

�
1

2

(u+2w)

(x) = x�

hu+ 2w;xi

4

(u+ 2w)

indu
es the map q 7!

4

4�q

, whi
h shows that 0 and 1 (and hen
e 1) lie in the

same slope 
lass. Hen
e there is exa
tly 1 slope 
lass.
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10.4. The 
ase

0

�

2

4

4

1

A

. Shifts at a and w yield the 
ase 2 from se
tion 6, hen
e

there are at most 2 slope 
lasses with representatives q = 0 and q =1, resp. The


anoni
al basis B

0

: a�w j a j u gives the 0-symbol

�

2

2

2

�

.

Hen
e there are pre
isely 2 slope 
lasses:

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.5. The 
ase

�

2

2

2

�

. Shifts at a and s

1

(or w) yield the 
ase 5 from

se
tion 6, hen
e there are at most 3 slope 
lasses with representatives q = 0,

q = �1 and q = 1, resp. The 
anoni
al basis B

0

: �s

1

j �a j u gives the

0-symbol whi
h 
oin
ides with the 1-symbol. The 
anoni
al basis B

�1

: s

1

j

�2a+ 4s

1

�w j

1

2

(w � u) gives the �1-symbol

0

�

2

4

4

1

A

.

Shift at the 1-tube whi
h is generated by

1

2

(u+w) and de�ned by

�
1

2

(u+w)

(x) = x�

hu+w;xi

4

(u+w);

indu
es the map q 7!

1

2�q

, hen
e 1 and 0 lie in the same slope 
lass. Therefore

we have exa
tly 2 slope 
lasses:

f

a

b

j a 2 Z; b 2 N; a; b oddg;

f

a

b

j a 2 Z; b 2 N; a even; b oddg [ f

a

b

j a 2 Z; b 2 N; a odd; b eveng:

Furthermore, also the shifts at s

1

and

1

2

(u+w) yield these 2 slope 
lasses. Note

also that �(

1

2

(u+w)) = 1 and that the 1-symbol is

0

�

2

4

4

1

A

.

10.6. The 
ase

�

3

3

�

. Shifts at a and s

1

yield the 
ase 3 from se
tion 6, hen
e

there are at most 2 slope 
lasses with representatives q = 0 and q =1, resp. The


anoni
al basis B

0

: �s

1

j �a; �

2

a j

1

3

u gives the 0-symbol

0

�

3

3

3

1

A

.

Hen
e we get pre
isely 2 slope 
lasses:

f

a

b

j a 2 Z; b 2 N; a � 0mod 3g; f

a

b

j a 2 Z; b 2 N; a 6� 0mod 3g:

10.7. The 
ase

0

�

3

3

3

1

A

. Shifts at a and s

1

yield the 
ase 3 from se
tion 6, hen
e

there are at most 2 slope 
lasses with representatives q = 0 and q =1, resp. The


anoni
al basis B

0

: �s

1

j �a; �

2

a j u gives the 0-symbol

�

3

3

�

.

Hen
e there are exa
tly 2 slope 
lasses:

f

a

b

j a 2 Z; b 2 N; a � 0mod 3g; f

a

b

j a 2 Z; b 2 N; a 6� 0mod 3g:
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10.8. The 
ase

�

2 2

2 2

�

. Shifts at a and s

1

yield the 
ase 2 from se
tion 6,

hen
e there are at most 2 slope 
lasses with representatives q = 0 and q = 1,

resp. The 
anoni
al basis B

0

: �s

1

j �a j �a� 2�s

2

+w j

1

2

u gives the 0-symbol

0

�

2 2

2 2

2 2

1

A

. Therefore we have pre
isely 2 slope 
lasses:

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.9. The 
ase

0

�

2 2

2 2

2 2

1

A

. Shifts at a and s

1

yield the 
ase 2 from se
tion 6,

hen
e there are at most 2 slope 
lasses with representatives q = 0 and q = 1,

resp. The 
anoni
al basis B

0

: s

1

� 2w j a j a � s

2

+ w j u gives the 0-symbol

�

2 2

2 2

�

. Hen
e there are exa
tly 2 slope 
lasses, namely

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.10. The 
ase

0

�

2 2

2 2

1 2

1

A

. Shifts at a and s

1

yield the 
ase 2 from se
tion 6,

therefore we have at most 2 slope 
lasses with representatives q = 0 and q = 1,

resp. The 
anoni
al basis B

0

: s

1

� w j a � s

2

+ w j a j u gives the 0-symbol

(2 2 j 2). Hen
e we have exa
tly 2 slope 
lasses:

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.11. The 
ase (2 2 j 2). Shifts at a and s

1

yield the 
ase 4 from se
tion 6,

hen
e there are at most 2 slope 
lasses with representatives q = 0 and q = 1,

resp. The 
anoni
al basis B

0

: �s

2

j �a j 2�a� 2�s

1

+w j u gives the 0-symbol

0

�

2 2

2 2

1 2

1

A

. Hen
e there are pre
isely 2 slope 
lasses:

f

a

b

j a 2 Z; b 2 N; b eveng; f

a

b

j a 2 Z; b 2 N; b oddg:

10.12. The 
ase

�

2 4

1 2

�

. Shifts at a and s

2

yield the 
ase 2 from se
tion 6,

therefore we have at most 2 slope 
lasses with representatives q = 0 and q = 1,

resp. The 
anoni
al basis B

0

: �s

2

j a� 2s

2

� �s

2

� �

2

s

2

+w j �a; �

2

a; �

3

a j

1

2

u

gives the 0-symbol

0

�

2 4

1 2

1 2

1

A

. Hen
e there are exa
tly 2 slope 
lasses:

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

10.13. The 
ase

0

�

2 4

1 2

1 2

1

A

. Shifts at a and s

2

yield the 
ase 2 from se
tion 6,

hen
e there are at most 2 slope 
lasses with representatives q = 0 and q = 1.
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The 
anoni
al basis B

0

: ��

3

s

2

j 2a � 2s

1

� s

2

� �s

2

+ 2w j a; �a; �

2

a j u gives

the 0-symbol

�

2 4

1 2

�

. We get pre
isely 2 slope 
lasses:

f

a

b

j a 2 Z; b 2 N; a eveng; f

a

b

j a 2 Z; b 2 N; a oddg:

11. Proof of Corollary 8.3

Let � 2 Aut V , and let q 2 Q su
h that �(0) = q. Sin
e U a
ts transitively

on the slope 
lasses, there is u 2 U su
h that u(q) = 0. We shall show that

u� = �

1

for some �

1

2 U , whi
h then will prove the 
orollary. Sin
e u�(0) = 0,

the element u� is represented by the matrix

�

1 0


 1

�

with 
 2 Z. As the analysis in

se
tion 10 shows, in ea
h tubular 
ase one of the �ve 
ases from se
tion 6 applies,

and the assertion is 
lear whenever the 
ase 1, 2 or 3 from se
tion 6 applies. Thus

it remains to show the assertion for the 
ases 10.2, 10.5 and 10.11. Taking into

a

ount that the element u� a
ts on ea
h slope 
lass one easily sees that 
 2 2Z

in these remaining 
ases, and then the assertion is also 
lear.
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