X. ÜBUNG ZUR TOPOLOGIE

Ausgabe: 20. Juni 2008

http://math-www.upb.de/~dirk/Vorlesungen/Topologie/

- **41. Aufgabe:** Man zeige, dass das Produkt von Wegen folgender Kürzungsregel genügt: Aus $\alpha_0 * \beta_0 \simeq \alpha_1 * \beta_1$ und $\beta_0 \simeq \beta_1$ folgt $\alpha_0 \simeq \alpha_1$.
- 42. Aufgabe: Man zeige, dass der Basiswechsel-Homomorphismus

$$\Phi_h \colon \pi_1(X, x_0) \to \pi_1(X, x_1), \ [\gamma] \mapsto [\overline{h} * \gamma * h]$$

nur von der Homotopieklasse des Weges $h: [0,1] \to X$ von x_0 nach x_1 abhängt.

- **43.** Aufgabe: Sei X ein topologischer Raum und $x_0 \in X$ ein Basispunkt. Sei $s_0 \in S^1$ ein Basispunkt, ohne Einschränkung $s_0 = 1$. (Wir fassen S^1 als Teilmenge von $\mathbb{C} = \mathbb{R}^2$ auf.) Man zeige, wie man eine natürliche Bijektion herstellt zwischen den Mengen $\pi_1(X, x_0)$ und $[(S^1, 1), (X, x_0)]$ (relative Homotopieklassen von Basispunkterhaltenden Morphismen). Man erkläre in natürlicher Weise eine Verknüpfung auf $[(S^1, 1), (X, x_0)]$, die $[(S^1, 1), (X, x_0)]$ zu einer Gruppe macht. Man zeige dann, dass damit die obige Bijektion ein Isomorphismus ist.
- **44. Aufgabe:** Man zeige: Ein topologischer Raum X ist genau dann einfach zusammenhängend, wenn zu jedem Paar von Punkten x, y in X genau eine Homotopieklasse von Wegen in X von x nach y existiert.
- **45.** Aufgabe: Man berechne die Fundamentalgruppen des Torus $S^1 \times S^1$ und des Volltorus $S^1 \times D^2$.