VII. ÜBUNG zu GRUNDZÜGE der ALGEBRA

Abgabe: MI, 6. DEZ. 2006, 11:00 UHR in den orangen Kasten Nr. 8 http://math-www.upb.de/~dirk/Vorlesungen/GZ-Algebra/

Bitte geben Sie außer Ihrem Namen auch deutlich die Übungsgruppe mit an.

19. Aufgabe: Sei $\mathbb{H} = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \mid a, b \in \mathbb{C} \right\}$ der Schiefkörper der Quaternionen. Seien $\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ \mathbf{j} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ \mathbf{k} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}.$

Es gilt offenbar: 1, i, j, k bilden eine Basis des \mathbb{R} -Vektorraums \mathbb{H} , und es gilt $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$ und $\mathbf{i}\mathbf{j} = -\mathbf{j}\mathbf{i} = \mathbf{k}$.

- a) Man zeige: Jedes $x \in \mathbb{H}$ mit $x \neq 0$ ist invertierbar in \mathbb{H} .
- b) Sei Im \mathbb{H} der von \mathbf{i} , \mathbf{j} , \mathbf{k} erzeugte Unterraum. Man zeige: Für alle $x, y \in \text{Im } \mathbb{H}$ gilt $x^2 \in \mathbb{R}\mathbf{1}$ und $xy + yx \in \mathbb{R}\mathbf{1}$. Man zeige auch:

$$\operatorname{Im} \mathbb{H} = \{ x \in \mathbb{H} \mid x^2 \in \mathbb{R} \mathbf{1} \text{ und } x \notin \mathbb{R} \mathbf{1} \setminus \{0\} \}.$$

- c) Man zeige: Das Zentrum von \mathbb{H} , also die Menge $\{x \in \mathbb{H} \mid xy = yx \text{ für alle } y \in \mathbb{H}\}$, ist gerade $\mathbb{R}1$. (HINWEIS: Man schreibe jedes Element in \mathbb{H} eindeutig in der Form $\alpha \mathbf{1} + u$ mit $\alpha \in \mathbb{R}$ und $u \in \text{Im } \mathbb{H}$ und verwende Teil b.)
- **d)** Man zeige: Für jedes $a \in \mathbb{H}$, $a \neq 0$, ist $h_a : \mathbb{H} \longrightarrow \mathbb{H}$, $h_a(x) = axa^{-1}$ ein Ringisomorphismus. Außerdem: Für $a, b \in \mathbb{H} \setminus \{0\}$ gilt $h_a = h_b$ genau dann, wenn $b^{-1}a \in \mathbb{R}1$ gilt.
- **20. Aufgabe:** Sei S die Matrix $\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$. Sei K die Menge aller 2×2 -Matrizen A mit rationalen Einträgen, für die AS = SA gilt.
- a) Mit der Matrizenaddition und -multiplikation ist K ein Körper. (Man beweise nur die Axiome, auf die es hier ankommt!)
 - **b)** K ist isomorph zu $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$ 6 P.

21. Aufgabe: Sei V ein endlich-dimensionaler K-Vektorraum über dem Körper K der Dimension $n \geq 1$, sei R der Endomorphismenring $\operatorname{End}_K(V)$. Es wird in dieser Aufgabe gezeigt, dass R nur die trivialen Ideale $\{0\}$ und R enthält. (Aber R ist kein Schiefkörper, falls $n \geq 2$.)

Sei $I \subseteq R$ ein Ideal, welches nicht nur aus dem Nullelement besteht.

- a) Man zeige: Sind $v, w \in V \setminus \{0\}$, so gibt es ein $f \in I$ mit f(v) = w. (HINWEIS: Basisergänzungssatz (mehrfach).)
- **b)** Sei b_1, \ldots, b_n eine Basis von V. Man zeige: Zu jedem $i \in \{1, \ldots, n\}$ gibt es ein $f_i \in I$ mit $f_i(b_j) = \begin{cases} b_i & i = j, \\ 0 & i \neq j. \end{cases}$
 - c) Was ist $f_1 + f_2 + \cdots + f_n$? Man zeige: I = R.
- d) (Nur mündlich!) Man formuliere obige Beweisschritte matrizentheoretisch, also im Ring $M_n(K)$.