Musterlösung zum 10. Blatt

- **26.** Aufgabe: Sei U eine Untergruppe von G, sei M = G/U die Menge der Rechtsnebenklassen von U in G.
- a) Man zeige, dass durch $(u, gU) \mapsto ugU$ eine Aktion von U auf der Menge M erklärt wird.

Lösung: Schreibe $u \cdot gU \stackrel{def}{=} ugU \stackrel{def}{=} (ug)U$ für jedes $u \in U$ und $gU \in M$. (Letztendlich ist die Klammerung egal.) Für das neutrale Elemente $e \in U$ gilt $e \cdot gU = (eg)U = gU$ und $(uv) \cdot gU = ((uv)g)U = (u(vg))U = u \cdot (vg)U = u \cdot (v \cdot gU)$ für alle $u, v \in U$ und $gU \in M$.

b) Man zeige, dass U Normalteiler in G ist genau dann, wenn jede Bahn bei obiger Aktion nur aus einem Element besteht. 3 P.

Lösung: (1) Sei U ein Normalteiler in G. Sei $gU \in M$. Die Bahn des Elementes ist gegeben durch $\{ugU \mid u \in U\}$. Da aber U ein Normalteiler in G ist, gilt gU = Ug, und es folgte ugU = uUg = Ug = gU, also besteht die Bahn nur aus dem einen Element gU. (2) Bestehe umgekehrt die Bahn von jedem gU nur aus einem Element. Sei $g \in G$. Dann ist ugU = gU für alle $u \in U$, also $g^{-1}ugU = U$, und es folgt $g^{-1}ug \in U$ für alle $u \in U$, und damit ist U ein Normalteiler in G.

c) Sei G eine endliche Gruppe, sei p die kleinste Primzahl, die |G| teilt. Man zeige, dass jede Untergruppe U von G vom Index p ein Normalteiler ist. (HINWEIS: Teil b.) 5 P.

Lösung: Sei U eine Untergruppe mit [G:U]=p. Nach b) genügt es zu zeigen, dass die Bahn eines jeden gU nur aus einem Element besteht.

Sei also $gU \in M$. Nach dem Bahnenlemma ist die Mächtigkeit der Bahn dieses Elements ein Teiler der Ordnung von U (nämlich $|U|/|\operatorname{St}(gU)|$, wobei $\operatorname{St}(gU)$ die Standuntergruppe des Elements gU ist).

Andererseits hat die Bahn natürlich höchstens soviele Elemente wie die gesamte Menge M, also höchstens p Elemente (|M| = |G/U| = [G:U] = p). Da p der kleinste Primteiler von |G| ist, kann dann die Bahn nur 1 oder p Elemente haben (es gibt keine Zahl > 1 und < p, die |G| teilt).

Es ist noch der Fall auszuschließen, dass die Bahn aus genau p Elementen besteht. Dann wäre die Bahn also ganz M, d. h. alle Elemente von M liegen in einer Bahn. Sei $g \in G$, mit $g \notin U$ (so ein Element gibt es offenbar). Dann liegen insbesondere die Elemente gU und U in M in derselben Bahn, d. h. es gibt ein $u \in U$ mit $u \cdot gU = U$, also ugU = U, und es folgt $gU = u^{-1}U = U$, also $g \in U$, Widerspruch!

27. Aufgabe: Sei G eine endliche Gruppe und U eine p-Sylowgruppe von G. Man zeige:

a) U ist die einzige p-Sylowgruppe von G genau dann, wenn U ein Normalteiler in G ist.

Lösung: (1) Sei U die einzige p-Sylowgruppe von G. Für jedes $g \in G$ ist offenbar auch gUg^{-1} eine p-Sylowgruppe von G (aus Anzahlsgründen). Wegen der Einzigkeit von U folgt $gUg^{-1} = U$, also ist U Normalteiler.

- (2) Sei umgekehrt U Normalteiler. Sei V eine p-Sylowgruppe von G. Dann ist nach dem zweiten Sylowsatz V konjugiert zu U, also gibt es ein $g \in G$ mit $V = gUg^{-1}$. Da U Normalteiler ist, gilt aber $gUg^{-1} = U$, also V = U.
- **b)** (Erinnerung: Es ist $N_G(U) = \{g \in G \mid gUg^{-1} = U\}$ der Normalisator von G.) Es ist U eine normale p-Sylowgruppe von $N_G(U)$.

Lösung: Es gelten offenbar folgende Inklusionen von Untergruppen: $U \subset N_G(U) \subset G$. Die Ordnung von U ist ein Teiler der Ordnung von $N_G(U)$, die wiederum ein Teiler der Ordnung von G ist. Es folgt: Ist $|G| = p^n m$ mit (p, m) = 1, so ist $|N_G(U)| = p^n s$, mit $s \mid m$. Wegen $|U| = p^n$ ist U eine p-Sylowgruppe von $N_G(U)$.

Zu zeigen ist noch, dass U ein Normalteiler in $N_G(U)$ ist. Dies folgt aber allgemein für Untergruppen, direkt aus der Definition des Normalisators: Ist $g \in N_G(U)$, so gilt $gUg^{-1} = U$, also gU = Ug. (Der Normalisator von U ist die größte Untergruppe von G, in der U Normalteiler ist.)

c) Es gilt
$$N_G(U) = N_G(N_G(U))$$
. 5 P.

Lösung: Setze zur Abkürzung $V = N_G(U)$. Es ist $N_G(V) = V$ zu zeigen. Natürlich gilt $V \subset N_G(V)$ (ist $v \in V$, so gilt $vVv^{-1} = V$ trivialerweise). Zu zeigen ist noch $N_G(V) \subset V$. Sei $g \in N_G(V)$. Dann gilt $gVg^{-1} = V$, erst recht $gUg^{-1} \subset V$ (da wie oben trivialerweise auch $U \subset N_G(U) = V$ gilt). Nach Teil b) ist U eine normale p-Sylowgruppe von V, also die einzige p-Sylowgruppe von V. Da aus Anzahlsgründen auch gUg^{-1} eine p-Sylowgruppe von V ist (weil ja $gUg^{-1} \subset V$ schon nachgewiesen), folgt $gUg^{-1} = U$. Also ist $g \in N_G(U) = V$. Es folgt $N_G(V) \subset V$, und insgesamt die Gleichheit.

28. Aufgabe: Sei G eine Gruppe der Ordnung 200. Man zeige, dass G einen Normalteiler hat, der verschieden ist von $\{e\}$ und G.

Lösung: Es ist $200 = 2^3 \cdot 5^2$. Die Anzahl $\alpha(5)$ der 5-Sylowgruppen von G ist nach dem dritten Sylowsatz einerseits ein Teiler von 200 (sogar von dem Co-Faktor $2^3 = 8$), und andererseits von der Form $\alpha(5) = 1 + 5k$ für ein $k \in \mathbb{N}$ ($0 \in \mathbb{N}$ nach Konvention). Also gibt es nur die Möglichkeit $\alpha(5) = 1$, d. h. es gibt nur eine einzige 5-Sylowgruppe von G, die dann ein Normalteiler ist (z. B. nach Aufgabe 27.). Dieser Normalteiler hat 25 Elemente, ist also von $\{e\}$ und G verschieden.