Vorlesung Knoten

(Sommersemester 2005)

Dirk Kussin

INSTITUT FÜR MATHEMATIK, UNIVERSITÄT PADERBORN, GERMANY E-mail address: dirk@math.upb.de

Inhaltsverzeichnis

Abbildungsverzeichnis		iii	
Kapitel	1. Knoten und Verschlingungen	1	
1.1.	Einleitung	1	
1.2.	Beispiele von Knoten und Verschlingungen	2	
1.3.	Definition von Knoten	2	
1.4.	Äquivalenz von Knoten	4	
1.5.	Reguläre Knotendiagramme	6	
1.6.	Einige klassische Knoteninvarianten	14	
Kapitel	2. Das Jones-Polynom	19	
2.1.	Das Klammer-Polynom	19	
2.2.	Das Kauffman-Polynom	24	
2.3.	Das Jones-Polynom	26	
2.4.	Summe von Knoten und Verschlingungen	30	
Kapitel	3. Knoten und Zöpfe	35	
3.1.	Die Artinsche Zopfgruppe	35	
3.2.	Die Sätze von Alexander und Markov	40	
3.3.	Die Yang-Baxter Gleichung	44	
3.4.	Das Jones-Polynom in zwei Variablen	49	
3.5.	Entwirrungsinvarianten	54	
Kapitel	4. Vassiliev-Invarianten	57	
4.1.	Singuläre Knoten und Invarianten	57	
4.2.	Polynominvarianten liefern Vassiliev-Invarianten	64	
4.3.	Numerische Invarianten, die keine Vassiliev-Invarianten sind	66	
4.4.	Sehnendiagramme	67	
4.5.	Der Satz von Kontsevich	69	
4.6.	Vassiliev-Invarianten kleiner Ordnung	72	
Literaturverzeichnis			

Abbildungsverzeichnis

1.1	Positive und negative Kreuzung L^+ und L^-	16
2.1	Zwei Auflösungen eines Kreuzungspunktes	19
2.2	Auflösungsbaum des Kleeblattknotens	23
2.3	Positive und negative Kreuzung L^+ und L^- und deren	
	Auflösung	24
2.4	Knoten zum Berechnen des Jones-Polynoms	28
2.5	Es gilt $m_+ = m_0 \pm 1$	30
2.6	Die Summe zweier Knoten	30
2.7	Unterschiedliche Verschlingungen mit selbem Jones-	
	Polynom	32
2.8	Unterschiedliche Knoten mit selbem Jones-Polynom	33
3.1	Beispiele von Zöpfen	35
3.2	Abschluss eines Zopfes	41
3.3	Ausrollen eines umlaufenden Knotens	42
3.4	Der Alexander-Trick	42
3.5	1. Markov-Bewegung liefert äquivalente Verschlingungen	43
3.6	2. Markov-Bewegung liefert äquivalente Verschlingungen	44
3.7	$(L \# L')^+ = (L \# L')^-$ und $(L \# L')^0 = L \sqcup L'$	53
4.1	Singuläre Knoten	59
4.2	Positive und negative Auflösung eines Doppelpunkts	59
4.3	Ein Knoten mit $m = 4r$ Doppelpunkten	66
4.4	Ein singulärer Knoten und sein Sehnendiagramm	67
4.5	Sehnendiagramme der Ordnung 3	68
4.6	1-Term und 4-Term Relation für Schnendiagramme	68
4.7	Relationen in $\mathcal{C}_4/\mathcal{C}_4^{(1,4)}$	73
	/ 1	

KAPITEL 1

Knoten und Verschlingungen

1.1. Einleitung

Ziel dieser Vorlesung ist es, ein Einführung in die Theorie der modernen Knoteninvarianten zu geben.

In der Knotentheorie werden Knoten im Raum untersucht. Dies sind topologische Objekte, die homöomorph zur Kreislinie S^1 sind. Dabei ist weniger ein einzelner Knoten interessant als vielmehr die Frage der Klassifikation von Knoten, oder die Möglichkeit zur Unterscheidung zweier gegebener Knoten. Da die Form eines Knotens im Raum sehr unterschiedlich sein kann, sieht man zwei Knoten nicht sofort an, ob sie auch wirklich verschieden sind. In der Tat ist dies i. a. ein sehr schwieriges Problem, das sogenannte *Vergleichsproblem*. Dies kann man häufig mit Hilfe von sogenannten Knoteninvarianten lösen. Dies ist eine Funktion auf der Menge aller Knoten, dessen Bilder Zahlen oder algebraische Objekte wie z. B. Polynome sein können. Haben zwei Knoten für eine Knoteninvariante verschiedene Werte, so müssen die Knoten verschieden sein. Natürlich ist dies nur hilfreich, wenn die Invariante auch leicht oder effizient zu berechnen ist. Ein Spezialfall des Vergleichsproblems ist das *Entknotungsproblem*, also die Frage, ob ein vorgegebener Knoten der *Unknoten* (gegeben durch die Kreislinie S^1 selbst) ist.

Das Vergleichsproblem ist nur ein Teilproblem des viel schwierigeren *Klassifikationsproblems*, d. h. die Erstellung einer vollständigen (wenn auch unendlichen) Tabelle aller Knoten (in der jeder Knoten auch nur einmal vorkommt). Dazu bräuchte man eine einfach zu berechnende *vollständige* Invariante der Knoten, d. h. einer Knoteninvariante, die für je zwei verschiedene Knoten *immer* verschiedene Werte annimmt. Bisher wurde keine effizient berechenbare vollständige Knoteninvariante gefunden. Zwar ist z. B. (wie 1989 gezeigt wurde) der Homöomorphietyp des Komplements eines Knoten eine vollständige Invariante, die aber in der Praxis nicht zu bestimmen ist.

Wir werden insbesondere folgende Knoteninvarianten behandeln:

- Das berühmte Jones-Polynom, welches Mitte der 1980'er von Vaughan Jones in der Theorie der von Neumann Algebren entdeckt wurde, und wofür Louis Kauffman Ende der 1980'er einen elementaren Zugang gefunden hat.
- Verallgemeinerungen des Jones-Polynoms (insbesondere das Jones-Polynom in zwei Variablen bzw. das nach verschiedenen Autoren

benannte HOMFLY-Polynom), die wir mit Hilfe der Yang-Baxter-Gleichung und der Theorie der Zöpfe gewinnen, und die universelle Entwirrungsinvarianten liefern.

• Die Anfang der 1990'er Jahre von Victor Vassiliev entwickelten Invarianten endlichen Typs, die auch Vassiliev-Invarianten heißen, und die oben stehenden Polynominvarianten in einem gewissen Sinne mit einschließen. Nach einem Satz von Maxim Kontsevich lassen sich diese Vassiliev-Invarianten kombinatorisch durch sogenannte Sehnen-Diagramme darstellen. Eine Vermutung besagt, dass die Vassiliev-Invarianten eine vollständige Knoteninvariante liefern (und damit eine Klassifikation der Knoten liefern würde), aber das ist noch ungelöst.

Der Schwerpunkt dieser Vorlesung liegt also weniger auf der Topologie, bei der wir uns etwas knapper fassen werden, als vielmehr auf den kombinatorisch/algebraischen Aspekten der Knotentheorie.

Hinweise zur Literatur: Als Hauptvorlage für diese Vorlesung dient das Buch von Prasolov und Sossinsky [11], genauer nur ein kleiner Teil davon (die ersten 60 Seiten, dazu Seiten 196–198). Eine schön geschriebene Einführung in den Stoff der Vorlesung gibt das Büchlein von Sossinsky [12].

Als ergänzende Literatur kann man den Artikel von Lück [9] und die Diplomarbeit von Feichtner [5] nennen. Beide sind im Internet zugänglich. Letztere bietet eine sehr detaillierte Einführung in die Polynominvarianten. Ferner ist noch das Buch von Murasugi [10] zu nennen.

Weitere Literatur wird an geeigneter Stelle genannt.

1.2. Beispiele von Knoten und Verschlingungen

(Werden nachgereicht. Vgl. Folien in der Vorlesung.)

1.3. Definition von Knoten

Anschaulich ist ein Knoten jedem bekannt: Knoten von Schnürsenkeln, Krawattenknoten, Seemannsknoten etc. In jedem Fall wird ein Stück Seil oder Schnur verknotet. Oder man kann auch zwei oder mehrere Teile zusammenoder verknoten.

In der Mathematik, in der Knotentheorie, wird meist eine spezielle Art von Knoten untersucht: Man hat ein Stück Seil mit zwei Enden, "verknotet" dieses Seil und klebt dann die Enden zusammen. Man hat es also mit einem geschlossenem Stück Seil zu tun.

Man fragt sich dann, ob zwei vorgegebene Knoten "gleich sind" (d. h. nach einer Deformation im Raum, die die Seile nicht zerreißt), oder in den "Unknoten" (d. h. das Seil bildet eine kreisförmige Schlaufe ohne "Überkreuzungen") überführt werden kann. Würde man die Seilenden nicht verkleben, so wären diese Fragen trivial zu beantworten. Es ließe sich dann offenbar jeder Knoten "entknoten". Wir stellen uns einen Knoten im Anschauungsraum, mathematisch im \mathbb{R}^3 , oder besser in der 3-Sphäre $S^3 = \{x \in \mathbb{R}^4 \mid |x| = 1\} \simeq \mathbb{R}^3 \cup \{\infty\}$ vor. Letztere hat den technischen Vorteil, dass es sich um eine *kompakte* (insbesondere triangulierbare) 3-Mannigfaltigkeit handelt. Andererseits, wenn man mit einem Knoten den unendlichen Punkt in S^3 meidet, lebt dieser Knoten im \mathbb{R}^3 .

Man hat es also mit einer einfach, geschlossenen Kurve im \mathbb{R}^3 zu tun, also mit einer injektiven, stetigen Funktion $f : S^1 \longrightarrow \mathbb{R}^3$, wobei S^1 die Einheitskreislinie ist.

ÜBUNG 1.3.1. Man mache sich klar, dass eine geschlossene Kurve $f : S^1 \longrightarrow \mathbb{R}^3$ im Prinzip dasselbe ist wie eine stetige Funktion $f : [0, 1] \longrightarrow \mathbb{R}^3$ mit f(0) = f(1). (Man betrachte die Funktion $[0, 1] \longrightarrow S^1$, $t \mapsto e^{2\pi i t}$.)

Je nachdem, welche Eigenschaften man von der die Kurve definierende Funktion f fordert, bekommt man unterschiedliche mathematische Modelle von Knoten. Insbesondere erscheinen folgende Eigenschaften als sinnvoll: fkann ein Polygonzug sein, f kann allgemeiner stetig sein, oder f kann (beliebig oft) differenzierbar (= glatt) sein. Allen dreien ist jedoch gemeinsam, dass sich der Kurvenzug nicht selbst schneidet.

Obwohl sie weniger der Vorstellung von Knoten entspricht, werden wir in erste Linie die erste Variante wählen, da sie sehr problemlos ist und mehr kombinatorisch als topologisch angehaucht ist. Das differential-geometrische glatte Modell ist dazu äquivalent. Dagegen ist das stetige Modell problembehaftet, da es die sogennanten wilden Knoten mit einschließt. Beschränkt man sich aber auf die sogenanten zahmen Knoten, so bekommt man hiermit auch dasselbe.

ÜBUNG 1.3.2. $f: S^1 \longrightarrow \mathbb{R}^3$ ist überschneidungsfrei genau dann, wenn f injektiv ist. Gilt dies auch, wenn man f als Funktion $[0, 1] \longrightarrow \mathbb{R}^3$ auffasst?

Seien X und Y topolgische Räume und $f : X \longrightarrow Y$ eine Abbildung. Es heißt f stetig, falls Urbilder offener Mengen immer offen sind. Sie heißt Homöomorphismus, falls sie stetig und bijektiv ist, wobei auch die Umkehrabbildung f^{-1} stetig ist. Falls so ein f exisitiert, heißen X und Y homöomorph. Die Abbildung f heißt Einbettung, falls die induzierte Abbildung $f : X \longrightarrow f(X)$ ein Homöomorphismus ist.

Es gibt (mindestens) drei naheliegende Definitionen von Knoten:

1.3.3 (Polygonale Knoten). Ist eine Einbettung $f: S^1 \longrightarrow \mathbb{R}^3$ (oder S^3) ein (eifach geschlossener) Polygonzug, d. h. stückweise linear (endlich viele Stücke), so heißt f ein polygonaler Knoten. Das Bild $f(S^1)$ setzt sich also aus endlich vielen Geradenstücken zusammen.

1.3.4 (Stetige Knoten). Eine Einbettung $f: S^1 \longrightarrow \mathbb{R}^3$ (oder S^3) heißt stetiger Knoten.

1.3.5 (Glatte Knoten). Ein glatter Knoten ist eine beliebig oft differenzierbare injektive Abbildung $f: S^1 \longrightarrow \mathbb{R}^3$, so dass das Differential nirgendwo verschwindet: Ist f(t) = (x(t), y(t), z(t)), so gilt $\left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right) \neq (0, 0, 0)$.

Die allgemeinste Definition (stetige Knoten) ist problembehaftet. Es können dort nämlich sogenannte *wilde* Knoten auftauchen, etwa

Bei der polygonalen bzw. glatten Variante ist dies jedoch ausgeschlossen.

Neben Knoten gibt es auch noch kompliziertere Gebilde, bei denen mehrere Knoten ineinander verschlungen sind:

1.3.6 (Verschlingungen). Eine *Verschlingung* (engl. link) besteht aus einer endlichen Anzahl sich nicht schneidender Knoten.

Bei einem Knoten $f: S^1 \longrightarrow \mathbb{R}^3$ (oder S^3) sind wir eigentlich nur an dem Bild $K = f(S^1)$ der zugehörigen Abbildung interessiert. Daher wird auch einfach dieses Bild K Knoten genannt.

Jeder Knoten ist also homöomorph zu S^1 .

1.4. Äquivalenz von Knoten

Stellt man sich einen Knoten als dünnes Gummiband im Raum vor, flexibel und elastisch, so wollen wir erlauben, dass wir es im Raum deformieren, ohne es zu zerreißen, und es soll sich dabei immer noch um "denselben" Knoten handeln. Wir betrachten also genauer Äquivalenzklassen von Knoten (die wir dann auch selbst Knoten nennen). Dies wird im folgenden formalisiert.

1.4.1. Zwei Einbettungen $f_0, f_1 : X \longrightarrow Y$ heißen ambient isotop, falls es einen Höhe erhaltenden Homöomorphismus

$$H: Y \times [0,1] \longrightarrow Y \times [0,1] \quad H(y,t) = (h_t(y),t)$$

mit $f_1 = h_1 \circ f_0$ und $h_0 = 1_Y$ gibt. Wir schreiben auch $f_0 \sim f_1$.

ÜBUNG 1.4.2. Man zeige, dass ambiente Isotopie eine Äquivalenzrelation ist $(f, g, h: X \longrightarrow Y$ Einbettungen):

- (1) (Reflexivität) $f \sim f$.
- (2) (Symmetrie) $f \sim g \Rightarrow g \sim f$.
- (3) (Transitivität) $f \sim g$ und $g \sim h \Rightarrow f \sim h$.

DEFINITION 1.4.3 (Knoten und Verschlingung). Sei $M = \mathbb{R}^3$ oder $M = S^3$. Eine (zahme) Verschlingung (engl. link) in M ist eine Einbettung

$$f: \coprod_{i=1}^r S^1 \longrightarrow M_i$$

die zu einem einfachen geschlossenen Polygonzug (mit r Komponenten) in M ambient isotop ist. Die Anzahl der Komponenten der Verschlingung ist r. Ein (zahmer) Knoten ist eine Verschlingung mit nur einer Komponente. Zwei Verschlingungen heißen äquivalent, falls sie ambient isotop sind.

Meist nennen wir das Bild $f(S^1)$ in M eine Verschlingung bzw. einen Knoten, und nicht die Abbildung selbst. Die Abbildung gibt dann eine Parametrisierung des Knotens an. Auch wird häufig die gesamte Äquivalenzklasse Knoten genannt.

Es sei angemerkt, dass gezeigt werden kann, dass ein glatter Knoten im obigen Sinn ein Knoten nach dieser Definition ist, d. h. jeder glatte Knoten ist ambient isotop zu einem polygonalen Knoten. In obiger Definition werden nur noch stetigen Knoten betrachtet, die nicht wild sind.

Im Wesentlichen genügt es, sich auf polygonale Knoten und Verschlingungen zu beschränken. Hierfür hat man einen weiteren Äquivalenzbegriff:

DEFINITION 1.4.4 (Elementare Deformation/kombinatorische Äquivalenz). Sei K ein polygonaler Knoten. Eine elementare Bewegung ist durch folgenden Prozess oder dessen Umkehrung gegeben: Sei [AB] ein Streckenzug von K. Dann kann [AB] ersetzt werden durch die zwei Streckenzüge $[AC] \cup [CB]$, wobei das Dreieck [ACB] mit K nur den Streckenzug [AB] gemeinsam hat. Insbesondere sind damit (als Spezialfall) auch Hinzufügen und Wegnehmen von Eckpunkten auf Strecken elementare Bewegungen.

Zwei polygonale Knoten K und K' heißen kombinatorisch äquivalent, falls es eine endliche Folge von elementaren Deformationen gibt, die K in K'überführt. (Analog für Verschlingungen.)

LEMMA 1.4.5 ([3, Prop. 1.10]). Zwei polygonale Knoten (Verschlingungen) in S^3 sind kombinatorisch äquivalent genau dann, wenn sie äquivalent (ambient isotop) sind.

Wenn nichts anderes gesagt wird, bedeutet im folgenden "Knoten" immer "polygonaler Knoten". Dementsprechendes gelte für Verschlingungen. Als Äquivalenz werden wir die kombinatorische Äquivalenz nehmen. In dieser Vorlesung werden wir uns in erster Linie für Knoten interessieren. Es wird aber Situationen geben, wo wir trotzdem auf Verschlingungen zurückgreifen müssen.

1.4.6 (Orientierte Knoten). Legt man eine der beiden möglichen Durchlaufrichtungen eines Knoten fest, so spricht man von einem *orientierten Knoten*. Äquivalenz (ambiente Isotopie) und kombinatorische Äquivalenz werden für orientierte Knoten analog definiert. Man fordert zusätzlich, dass die Abbildungen h_t bzw. die elementaren Bewegungen die Orientierung bewahren.

Wir werden meistens orientierte Knoten betrachten. Man hat noch eine weitere Möglichkeit für Äquivalenz:

LEMMA 1.4.7 ([3, Prop. 1.10]). Zwei orientierte Knoten (Verschlingungen) K_1 und K_2 in S^3 sind äquivalent (ambient isotop) genau dann, wenn es einen orientierungserhaltenden Homöomorphimums $\phi : S^3 \longrightarrow S^3$ gibt mit $\phi(K_1) = K_2$.

DEFINITION 1.4.8. Eine Knoteninvariante ist eine Funktion $I : \mathcal{K}_0 \longrightarrow X$, die auf der Menge aller Knoten \mathcal{K}_0 definiert ist (und X irgendeine Menge ist, z. B. ein Körper oder ein Polynomring) mit der Eigenschaft

$$K_1 \sim K_2 \quad \Rightarrow \quad I(K_1) = I(K_2).$$

Es läßt sich dann I auf der Menge der Äquivalenzklassen von Knoten definieren.

Die Knoteninvariante I heißt vollständig, falls auch stets die Umkehrung

$$I(K_1) = I(K_2) \quad \Rightarrow \quad K_1 \sim K_2$$

gilt.

Analog definiert man allgemein Verschlingungsinvarianten.

Das Hauptziel dieser Vorlesung wird sein, Knoteninvarianten zu definieren, die man auch relativ leicht berechnen kann, und die "möglichst viele" Knoten unterscheiden können. Zunächst ein tiefliegendes theoretisches Resultat, das zeigt, dass vollständige Knoteninvarianten durchaus existieren, aber deren konkrete Berechnung schwierig, wenn nicht unmöglich, ist.

SATZ 1.4.9 (C. Gordon und J. Luecke 1989). Das Komplement eines Knoten in S^3 ist bis auf Homöomorphie eine vollständige Knoteninvariante.

Dieses theoretisch sehr schöne Ergebnis ist für die Klassifizierung von Knoten in der Praxis kaum zu gebrauchen.

1.5. Reguläre Knotendiagramme

Wir haben schon Beispiele von Knoten gesehen, wie wir auf die Tafel oder auf ein Blatt Papier gemalt haben. In der Tat ist es prinzipiell immer möglich und sehr hilfreich, einen Knoten zweidimensional darzustellen. Man projiziert ihn auf eine geeignete Ebene und notiert bei den entstehenden Überkreuzungen, welche Abschnitte oben bzw. unten liegen. Beachtet man

ein paar weitere Regeln, so kann man den ursprünglichen Knoten (bis auf Äquivalenz) eindeutig aus diesem zweidimensionalen Bild zurückgewinnen.

Damit die Sache wirklich eine Erleichterung darstellt, muss man klären, was Äquivalenz (ambiente Isotopie bzw. kombinatorische Äquivalenz) auf Niveau dieser Bilder bedeutet. Dies wird vollständig geklärt in dem Satz von Reidemeister. Damit hat man das ursprüngliche dreidimensionale Problem auf ein zweidimensionales reduziert.

DEFINITION 1.5.1. Sei E eine feste gewählte Ebene in \mathbb{R}^3 und L eine (polygonale) Verschlingung (oder Knoten) in \mathbb{R}^3 . Eine Parallelprojektion π : $L \longrightarrow E$ heißt regulär, falls folgende Bedingungen erfüllt sind:

- (1) Es gibt höchstens Doppelpunkte, d. h. maximal zwei Punkte werden auf ein und denselben Punkt in der Ebene abgebildet. In Formeln: Für jeden Punkt $x \in E$ gilt $|\pi^{-1}(x)| \leq 2$.
- (2) Es gibt nur endlich viele Doppelpunkte, d. h. es gibt nur endlich viele $x_1, \ldots, x_t \in E$ mit $|\pi^{-1}(x_i)| = 2$.
- (3) Ein Eckpunkt wird niemals auf einen Doppelpunkt abgebildet, d. h. $\pi^{-1}(x_i)$ enthält keinen Eckpunkt (für i = 1, ..., t).

Die Punkte x_1, \ldots, x_t heißen auch Kreuzungspunkte.

Es folgt insbesondere, dass sich Teilstücke von $\pi(L)$ nicht tangential, sondern nur transversal schneiden.

Folgende Beispiele sind also bei einer regulären Projektion ausgeschlossen:

(der Reihe nach wegen (1), (3) bzw. (2)).

Die folgende Aussage ist intuitiv klar.

LEMMA 1.5.2. Sei L eine (polygonale) Verschlingung im \mathbb{R}^3 . Dann gibt es eine Ebene $E \subset \mathbb{R}^3$ und eine Paralellprojektion $\pi : L \longrightarrow E$.

In der Tat kann man "fast jede" Ebene nehmen. Da man zwei Verschlingungen auch als eine Verschlingung auffassen kann, gibt es zu zwei Verschlingungen L und L' eine gemeinsame Ebene E mit regulären Projektionen $\pi: L \longrightarrow E$ und $\pi: L' \longrightarrow E$.

Ebenso ist intuitiv klar, dass man sogar die Ebene E fest vorgeben kann (z. B. die xy-Ebene) und nach einer eventuellen äquivalenten Überführung von L in L' eine reguläre Projektion $\pi : L' \longrightarrow E$ bekommt.

Bei einer regulären Projektion $\pi: L \longrightarrow E$ verliert man Informationen über die Verschlingung L. Man kann aber L bis auf Äquivalenz aus $\pi(L)$ rekonstruieren, wenn man in dem Bild $\pi(L)$ kennzeichnet, welche der Zweige sich überkreuzen bzw. unterkreuzen. Dann heißt ein derart gekennzeichnetes Bild ein (reguläres) Verschlingunsdiagramm oder, falls L ein Knoten ist, ein (reguläres) Knotendiagramm. Es wird mit D(L) bezeichnet.

Es taucht nun die Frage auf, wie sich die (kombinatorische) Äquivalenz von Knoten (Verschlingungen) auf die Diagramme überträgt. Hierzu benötigen wir zunächst einen Äquivalenzbegriff für solche Diagramme.

DEFINITION 1.5.3 (Ebene Isotopie). Zwei Knotendiagramm, die durch eine endliche Folge von Deformationen des folgenden Typs (bzw. deren Umkehrungen) ineinander übergehen

heißen *eben isotop*. Die Deformationen selbst heißen *ebene Isotopien*. Häufig spricht man auch von Deformationen des Typs Ω_0 .

Hier und im folgenden bedeuten obige kreisförmige Diagramme, dass man sich (sozusagen mit der Lupe) einen Ausschnitt des Knotens anschaut, den Teil innerhalb des Kreises. Die angedeuteten Deformationen sind so, dass der Knoten außerhalb des Kreises völlig unverändert bleibt.

1.5.4. Folgendes kann während der Durchführung einer ebenen Isotopie *nicht* auftreten:

- (1) Ein neuer Kreuzungspunkt entsteht oder ein alter verschwindet.
- (2) Die Projektion zweier Zweige der Verschlingung schneiden sich tangential.
- (3) Punkte aus mehr als zwei Zweigen werden auf einen einzigen Punkt in der Projektion bewegt.

All dies kann jedoch bei den folgenden Bewegungen eintreten (zumindestens "zwischenzeitlich"). Man beachte, dass diese Bewegungen alle durch kombinatorische Äquivalenzen im Raum zustande kommen können.

DEFINITION 1.5.5 (Reidemeister-Bewegungen). Die Reidemeister-Bewegungen Ω_1 , Ω_2 , und Ω_3 (und deren Umkehrungen) sind der Reihe nach die folgenden Bewegungen auf Knotendiagrammen:

ÜBUNG 1.5.6. Aus den beschriebenen Reidemeister-Bewegungen (und den ebenen Isotopien) erhält man weitere Bewegungen, die den Reidemeister-Bewegungen sehr ähnlich sind, und die meist auch mit dazugerechnet werden; wir geben nur einige Beispiele:

SATZ 1.5.7 (Reidemeister). Zwei Verschlingunsdiagramme stellen äquivalente Verschlingungen dar genau dann, wenn sie sich durch eine endliche Anzahl von Reidemeisterbewegungen vom Typ Ω_1 , Ω_2 und Ω_3 und ebenen Isotopien ineinander überführen lassen.

BEWEIS. Jede planare Isotopie oder Reidemeister-Bewegung lässt sich offenbar durch eine räumliche ambiente Isotopie (bzw. kombinatorische Äquivalenz) realisieren.

Schwieriger ist es, die Umkehrung zu zeigen. Wir beschränken uns in der Argumentation auf Knoten. Sei K ein Knoten. Zunächst zeigen wir, dass eine Änderung der Projektionsrichtung eine Deformation bewirkt, die durch eine endliche Folge von Bewegungen des Typs Ω_0 , Ω_1 , Ω_2 , Ω_3 gegeben ist. Bewegt man eine Projektionsebene E stetig in eine andere E' (beide regulär, d. h. die zugehörigen Projektionen des Knoten K sind regulär), so wird man i. a. unterwegs auf (endlich viele) nicht-reguläre Ebenen stoßen. Solange die Ebenen regulär bleiben, ändert sich das Diagramm nur um Deformationen vom Typ Ω_0 . Beim Überschreiten einer nicht-regulären Ebene, wobei eine der Bedingungen (1), (2) bzw. (3) in Definition 1.5.1 verletzt ist (siehe die der Definition anschließende Bilder; man stelle sich vor, wie man sich der nicht-regulären Situation nähert und sie dann überschreitet), wird gerade eine Reidemeister-Bewegung vom Typ Ω_3 (bei (1)) oder Ω_2 (bei (2) oder (3)) durchgeführt.

Wir nehmen nun an, dass der Knoten K durch eine elementare Bewegung, die die Strecke [AB] ersetzt durch die Streckenzüge $[AC] \cup [CB]$, in den Knoten K' überführt wird. Es genügt zu zeigen, dass sich D(K) durch eine endliche Folge von Bewegungen des Typs Ω_0 , Ω_1 , Ω_2 und Ω_3 in D(K')überführen lässt. Nach dem vorherigen Beweisteil können wir annehmen, dass die (regulären) Knotendiagramme D(K) und D(K') beide in derselben Ebene E liegen. Sei π die entsprechende Parallelprojektion. Das Dreieck [ACB] im Raum wird abgebildet auf das Dreieck $\Delta = [acb]$ in E.

Man kann (nach evtl. Bewegung vom Typ Ω_1) annehmen, dass die Projektionen der Strecken [AD] und [BE] mit dem Inneren des Dreiecks Δ keine Punkte gemeinsam haben. $\pi(K)$ ist ein (nicht notwendig einfacher) Polygonzug in *E*. Gewisse Teile von $\pi(K)$ liegen in D(K) ganz oberhalb bzw. ganz unterhalb von Δ . (Beweis: Es ist $\pi^{-1}(\Delta)$ ein unendliches Prisma *P* im Raum, das durch das Dreieck [*ACB*] in eine obere Hälfte P_+ und eine untere Hälfte P_- geteilt wird. Ein Komponente von *K* innerhalb von *P* verläuft entweder ganz in P_+ oder ganz in P_- , da *K* mit dem Inneren des Dreiecks [*ACB*] keine Punkte gemeinsam hat, nach der Definition einer elementaren Deformation.)

Man kann also die Teile der Polygonzüge, die Δ schneiden, in obere (grün) und untere (rot) einteilen. Wir zerlegen das Dreieck Δ in kleinere Dreiecke, die von folgenden Typen sein können:

Typ I: In dem Dreieck liegt ein Kreuzungspunkt, und die zwei sich kreuzenden Strecken schneiden nur zwei Kanten des Dreiecks. Etwa:

Typ II: In dem Dreieck liegt ein Eckpunkt des Polygonzuges; in diesem kommen zwei Strecken zusammen. Etwa:

Typ III: In dem Dreieck liegt nur ein Teil einer Kante, ohne Eckpunkt, ohne Überkreuzung. Etwa:

Typ IV: In dem Dreieck liegt kein Teil (der Projektion) des Knotens K.

Eine solche Zerlegung ist einfach zu konstruieren: Zunächst konstruiert man "kleine" Dreiecke des Typs I und II in einer Umgebung eines Kreuzungspunktes bzw. Eckpunktes. Dann zerlegt man den Rest in Dreiecke des Typs III und IV.

Nun zerlegt man die elementare Bewegung $[AB] \mapsto [AC] \cup [CB]$ in mehrere Schritte, wobei man bei jedem Schritt eine elementare Bewegung über eines der konstruierten Dreiecke macht. Man sieht, dass abhängig von dem Typ des Dreiecks dabei Bewegungen des folgenden Typs angewendet werden: Also wird die ursprüngliche elementare Deformation so in einzelne elementa-

Тур	Bewegung
Ι	Ω_3
II	Ω_0 oder Ω_2
III	Ω_0 oder Ω_2
IV	Ω_0

re Deformationen zerlegt, die auf dem Diagramm jeweils eine Reidemeister-Bewegung vom Typ Ω_1 , Ω_2 oder Ω_1 , oder eine planare Isotopie bewirken. \Box

DEFINITION 1.5.8. Zwei Verschlingungsdiagramme (bzw. Knotendiagramme) D(L) und D(L') heißen *äquivalent*, wenn es eine endliche Folge von Reidemeisterbewegungen vom Typ Ω_1 , Ω_2 und Ω_3 und ebenen Isotopien gibt, die D(L) in D(L') überführen.

FOLGERUNG 1.5.9. Zwei Knoten K und K' sind äquivalent genau dann, wenn ihre Knotendiagramme D(K) und D(K') äquivalent sind.

BEMERKUNG 1.5.10. (1) Durch den Satz von Reidemeister bekommt man einen elementaren Zugang zur Knotentheorie. Man könnte sogar annehmen, dass es einen endlichen Algorithmus gibt, der entscheidet, ob zwei vorgegebene Knotendiagramme äquivalent sind. Bisher ist ein solcher nicht bekannt. (Ein Entknotungsalgorithmus von Haken vom Ende der 1950'er Jahre ist zu kompliziert für ein Computerprogramm.) Ein Problem, was hierbei auftritt, ist, dass man beim Entknoten manchmal zwischendurch die Überkreuzungszahlen vergrößern muss (der Knoten wird also zwischendurch "komplizierter" statt "einfacher") und keine a priori Schranke für eine solche Überkreuzungszahl bekannt ist.

(2) Der Satz von Reidemeister wird uns außerordentlich hilfreich sein beim Definieren von Knoteninvarianten. Dazu muss man eine Funktion auf den Knotendiagrammen definieren, von der man dann zu verifizieren hat, dass sie unter den Reidemeister-Bewegungen (und den ebenen Isotopien) invariant ist. Da es sich bei den Reidemeister-Bewegungen um sehr spezielle Deformationen von geringer Anzahl handelt, ist dies häufig nicht schwierig.

(3) Für *orientierte* Knoten oder Verschlingungen fordert man bei den ebenen Isotopien und bei den Reidemeister-Bewegungen, dass sie die Orientierungen in naheliegender Weise bewahren. Der Satz von Reidemeister gilt für orientierte Verschlingungen dementsprechend.

1.5.11. Die Angabe der Reidemeister-Bewegungen in der polygonalen Form wie oben ist beweistechnisch angenehm, ansonsten in der Praxis etwas schwerfällig. Die Bewegungen vom Typ Ω_1 , Ω_2 , Ω_3 notieren wir auch wie folgt. (Entsprechendes gilt für die analogen Bewegungen, vgl. Übung 1.5.6.)

 $\ddot{\mathrm{U}}\mathrm{BUNG}$ 1.5.12. Man entknote den folgenden Knoten mit Hilfe der Reidemeister-Bewegungen:

 $\ddot{\mathrm{U}}\mathrm{BUNG}$ 1.5.13. Man zeige, dass die folgenden Knoten ambient isotop sind:

1.6. Einige klassische Knoteninvarianten

1.6.1. Die minimale Kreuzungszahl. Sei c(D) die Kreuzungszahl eines regulären Knotendiagramms D. Für einen Knoten K definiere

$$c(K) = \min_{D} c(D),$$

wobei D alle regulären Diagramme von allen zu K äquivalenten Knoten durchläuft. Jede einzelne Zahl c(D) ist keine Invariante des Knotens K, da z. B. folgende Diagramme des Unknotens Kreuzungszahl 0 bzw. 1 liefern.

UBUNG 1.6.1. Man zeige, dass der Unknoten der einzige Knoten ist, der ein reguläres Diagramm D besitzt mit c(D) = 0, 1 oder 2.

PROPOSITION 1.6.2. Die minimale Kreuzungszahl c(K) ist eine Knoteninvariante.

BEWEIS. Sei K ein Knoten und D_0 ein reguläres Knotendiagramm von K, für das die Kreuzungszahl minimal ist, also $c(K) = c(D_0)$. Sei K' ein zu K äquivalenter Knoten und D'_0 ein reguläres Knotendiagramm von K', für das die Kreuzungszahl minimal ist, also $c(K') = c(D'_0)$. Nun ist D'_0 auch eine reguläres Knotendiagramm von K, also gilt $c(K) = c(D_0) \leq c(D'_0) = c(K')$, und analog erhält man $c(K') \leq c(K)$. Es folgt c(K) = c(K').

1.6.2. Die Entknotungszahl. Sei K ein Knoten und D(K) ein zugehöriges Knotendiagramm. Ein Kreuzungswechsel in D(K) ist eine lokale Änderung einer Überkreuzung zu einer Unterkreuzung bzw. umgekehrt. (Dies ist keine ambiente Isotopie!)

UBUNG 1.6.3. Man zeige, dass man den Kleeblattknoten durch *einen* Kreuzungswechsel in den Unknoten überführen kann.

Der folgende Satz wir auch in späteren Kapiteln sehr wichtig sein.

SATZ 1.6.4. Eine Verschlingung L mit r Komponenten kann durch eine geeignete Folge von Kreuzungswechseln zur trivialen Verschlingung mit r Komponenten transformiert werden.

BEWEIS. Sei zunächst r = 1, also L ein Knoten. Man wähle eine reguläre Projektion $\pi : L \longrightarrow E$. Wir nehmen ohne Einschränkung an, dass E die xy-Ebene ist. Es ist $\pi(L)$ eine (i. a. nicht-einfache) geschlossene Kurve in E. Sei $f : S^1 \longrightarrow E$ eine stetige Abbildung, die $\pi(L)$ parametrisiert, und zwar so, dass f(0) kein Doppelpunkt ist und dessen x-Wert auf L maximal ist (deformiere L evtl. minimal.) Definiere $F : [0, 1] \longrightarrow \mathbb{R}^3 = E \times \mathbb{R}$ durch $F(t) = (f(e^{2\pi i t}), t)$. Verbindet man F(0) und F(1) mit einer Geraden, so liefert F([0, 1]) zusammen mit dieser Verbindung offenbar den Unknoten, denn eine (reguläre) Projektion z. B. auf die xz-Ebene ist überschneidungsfrei. Offensichtlich ist, dass man diesen Knoten durch Überkreuzungswechsel erhalten kann.

Bei einer Verschlingung mit mehreren Komponenten argumentiert man für jede Komponente wie vorher, wobei man dafür sorgt, dass jede Kopie des Unknotens auf einer anderen Höhe liegt. $\hfill \Box$

DEFINITION 1.6.5. Sei D ein Diagramm des Knotens K. Mit u(K) bezeichnen wir die minimale Anzahl notwendiger Kreuzungswechsel, die D in ein Diagramm des Unknotens abändern. Die Zahl

$$u(K) = \min_{D} u(D),$$

wobei D alle regulären Diagramme von allen zu K äquivalenten Knoten durchläuft, heißt *Entknotungszahl* des Knotens K.

PROPOSITION 1.6.6. Die Entknotungszahl u(K) ist eine Knoteninvariante.

BEWEIS. Übungsaufgabe.

Der Beweis, dass die minimale Kreuzungszahl und die Entknotungszahl Knoteninvarianten sind, ist sehr einfach. Dafür sind diese Werte nur sehr schwer zu berechnen. Dies ist anders bei der Invariante im nächsten Unterabschnitt.

1.6.3. Die Windungszahl. Wir betrachten hier Diagramme *orientier*ter Verschlingungen. Dann gibt es zwei Arten von Kreuzungen, *positive* und *negative*, wie in Abbildung 1.1 beschrieben.

ABBILDUNG 1.1. Positive und negative Kreuzung L^+ und L^-

Ist c eine Kreuzung, so erhält sie das Vorzeichen sgn(c) = 1 im Falle von L^+ und sgn(c) = -1 im Falle von L^- .

DEFINITION 1.6.7 (Windungszahl). Sei L eine orientierte Verschlingung, die aus genau zwei Komponenten, also aus zwei orientierten Knoten K_1 und K_2 besteht. Sei D ein zugehöriges Verschlingungsdiagramm. Dann ist die Windungszahl $w(L) = w(K_1, K_2)$ definiert als $\frac{1}{2} \sum_{i=1}^{n} \varepsilon_i$, wobei *i* alle Kreuzungen in D durchläuft, an denen *beide* Komponenten K_1 und K_2 beteiligt sind, und ε_i das Vorzeichen der *i*-ten Kreuzung ist.

Achtung: Die Definition ist (zunächst) abhängig vom Diagramm D! Das dies aber unerheblich ist, fogt aus der nächsten Proposition.

ÜBUNG 1.6.8. Man argumentiere, dass die Windungszahl $w(K_1, K_2)$ immer eine ganze Zahl ist. (Stichwort: Jordanscher Kurvensatz.)

UBUNG 1.6.9. Für einen orientierten Knoten K sei -K der Knoten, der durch die umgekehrte Orientierung hervorgeht. Man zeige $w(K_1, -K_2) = -w(K_1, K_2)$.

PROPOSITION 1.6.10. Die Windungszahl $w(K_1, K_2)$ ist eine Verschlingungsinvariante (L orientierte Verschlingung mit zwei Komponenten K_1 , K_2).

BEWEIS. Im Gegensatz zu der minimalen Kreuzungszahl und der Entknotungszahl ist hier wirklich etwas zu zeigen. Der Beweis demonstriert zum ersten mal die Nützlichkeit des Satzes von Reidemeister.

Dazu betrachten wir eine (orientierte) Verschlingung L und ein zugehöriges Verschlingungsdiagramm D. Wir müssen zeigen, dass die Windungszahl gleich

bleibt, wenn man D durch eine Reidemeister-Beweugung Ω_1 , Ω_2 oder Ω_3 abändert. (Für ebene Isotopien Ω_0 ist dies sowieso klar.) Wir nehmen uns die drei Typen der Reihe nach vor.

Eine Bewegung vom Typ Ω_1 erzeugt einen weiteren Kreuzungspunkt, aber *nur innerhalb einer* der beiden Komponenten K_1 oder K_2 . Daher bleibt die Windungszahl unverändert.

Eine Bewegung vom Typ Ω_2 verändert die Anzahl der Kreuzungen um ± 2 . Dies kann nur eine Komponente betreffen (wobei dann die Windungszahl sich nicht ändert) oder beide Komponenten. Im letzten Fall hat man es mit Hinzufügung (oder Wegnehmen) zweier Überkreuzungen oder zweier Unterkreuzungen zu tun, allerdings ändert haben beide Kreuzungen offenbar umgekehrte Vorzeichen. Daher ändert sich die Windungszahl insgesamt nicht.

Betrachten wir nun eine Bewegung vom Typ Ω_3 . Hier treten drei verschiedene Zweige der Verschlingung auf.

Unabhängig von der Orientierung dieser Zweige gilt offenbar für die Vorzeichen der Kreuzungspunkte

 $\operatorname{sgn}(c1) = \operatorname{sgn}(c2'), \ \operatorname{sgn}(c2) = \operatorname{sgn}(c1'), \ \operatorname{sgn}(c3) = \operatorname{sgn}(c3').$

Gehören alle drei Zweige zur selben Komponente, so bleibt die Windungszahl unverändert. Es gelte also, dass beide Komponenten involviert sind. Hier kann man drei Fälle unterscheiden:

a) Der oberste Zweig gehört zur einen, und die beiden dadrunterliegenden Zweige gehören zu der anderen Komponente. Man muss zeigen, dass $\operatorname{sgn}(c1) + \operatorname{sgn}(c2) = \operatorname{sgn}(c1') + \operatorname{sgn}(c2')$ gilt. Dies folgt aber aus obigen Identitäten.

b) Der oberste und der unterste Zweig gehören zusammen. Dann folgt die Behauptung aus sgn(c1) + sgn(c3) = sgn(c2') + sgn(c3').

c) Der oberste und der mittlere Zweig gehören zusammen. Dann folgt die Behauptung aus sgn(c2) + sgn(c3) = sgn(c1') + sgn(c3').

ÜBUNG 1.6.11. Man definiere die Windungszahl analog für einen orientierten Knoten, d. h. für eine orientierte Verschlingung mit nur einer Komponenten. Ist dies eine Knoteninvariante? (Wo geht es schief?)

KAPITEL 2

Das Jones-Polynom

2.1. Das Klammer-Polynom

Im folgenden werden wir Knoten und Verschlingungen meist mit ihren Diagrammen identifizieren. Auch wenn wir nur "Knoten" und "Verschlingung" schreiben, meinen wir meist genauer ein Knoten- bzw. ein Verschlingungsdiagramm.

Man möchte einem Verschlingungsdiagramm ein Polynom in den Variablen a, b, c zuordnen, so dass folgendes gilt:

(2.1.1)
$$\langle \bigotimes \rangle = a \langle \bigotimes \rangle + b \langle \bigotimes \rangle$$

$$(2.1.2) \qquad \langle L \sqcup \bigcirc \rangle = c \langle L \rangle$$

$$(2.1.3) \qquad \langle \bigcirc \rangle = 1$$

(\bigcirc der Unknoten, \sqcup die disjunkte Vereinigung.) Dies ist ein Ansatz, bei dem a, b und c zunächst noch Unbestimmte sind. Wir wollen untersuchen, ob $\langle L \rangle$ invariant unter den Reidemeister-Bewegungen ist. Wir werden sehen, dass dazu gewisse Abhängigkeiten zwischen a, b und c gelten müssen.

In der Relation (2.1.1) wird ein Kreuzungspunkt in einer Verschlingung L auf zwei Arten *aufgelöst* (oder: entwirrt), was zu Verschlingungen L_A und L_B führt:

ABBILDUNG 2.1. Zwei Auflösungen eines Kreuzungspunktes

2. DAS JONES-POLYNOM

Man beachte, dass sich die Diagramme für L_A und L_B eindeutig aus dem Diagramm für L ergeben, unabhängig davon, wie man das Diagramm für Ldreht. Es befinden sich nämlich die Bögen in L_A bzw. L_B in den Regionen A bzw. B in dem folgenden Diagramm:

Wenn man sich auf dem oberen Zweig bewegt, dann befindet sich die Region A auf der linken Seite bevor man auf die Kreuzung trifft; danach befindet sie sich auf der rechten Seite (umgekehrt für Region B). Dies ist unabhängig von der Durchlaufrichtung (d. h. von der Orientierung).

Wir untersuchen nun, welche Abhängigkeiten zwischen a, b und c gelten müssen, damit der Ausdruck $\langle L \rangle$ invariant ist unter allen Reidemeister-Bewegungen Ω_1, Ω_2 und Ω_3 . Wir beginnen mit Ω_2 . Benutzt man (2.1.1) mehrfach und (2.1.2) einmal, so bekommt man

$$\langle \bigotimes \rangle = a \langle \bigotimes \rangle + b \langle \bigotimes \rangle$$
$$= a[a \langle \bigotimes \rangle + b \langle \bigotimes \rangle] + b[a \langle \bigotimes \rangle + b \langle \bigotimes \rangle]$$
$$= (a^2 + b^2 + abc) \langle \bigotimes \rangle + ab \langle \bigotimes \rangle$$

Falls nun ab = 1, d. h. $b = a^{-1}$, und $a^2 + b^2 + abc = 0$, d. h. $c = -a^2 - a^{-2}$, so wäre $\langle L \rangle$ invariant unter der Bewegung Ω_2 . Wir setzen also $b = a^{-1}$ und $c = -a^2 - a^{-2}$. Damit ist also der Ausdruck $\langle L \rangle$ invariant unter der Bewegung Ω_2 .

Die Relationen (2.1.1) und (2.1.2) werden zu

(2.1.4)
$$\langle \bigotimes \rangle = a \langle \bigotimes \rangle + a^{-1} \langle \bigotimes \rangle$$

(2.1.5)
$$\langle L \sqcup \bigcirc \rangle = -(a^2 + a^{-2}) \langle L \rangle$$

Wir fahren fort mit Ω_3 . Weiterer Spielraum bleibt nun nicht mehr. Wegen (2.1.4) erhält man

(2.1.6)
$$\langle \bigotimes \rangle = a \langle \bigotimes \rangle + a^{-1} \langle \bigotimes \rangle,$$

(2.1.7)
$$\langle \bigotimes \rangle = a \langle \bigotimes \rangle + a^{-1} \langle \bigotimes \rangle.$$

Offenbar gilt $\langle \bigcirc \rangle = \langle \bigcirc \rangle$, da beide Diagramme eben isotop sind.

Wendet man zweimal die (bereits bewiesene) Ω_2 -Invarianz an, so bekommt man

$$\langle \bigotimes \rangle = \langle \bigotimes \rangle = \langle \bigotimes \rangle.$$

Vergleicht man nun die rechte Seite der Gleichungen (2.1.6) und (2.1.7), so sieht man, dass sie Term für Term gleich sind. Also gilt dies auch für die linken Seiten, und dies beweist die Ω_3 -Invarianz.

Untersuchen wir nun, ob auch die Ω_1 -Invarianz gilt. Hier haben wir leider Pech! Denn es gilt einerseits

(2.1.8)
$$\langle \bigcirc \rangle = a \langle \bigcirc \rangle + a^{-1} \langle \bigcirc \rangle = -a^3 \langle \bigcirc \rangle,$$

und eine ähnliche Rechnung liefert andererseits

(2.1.9)
$$\langle \bigcirc \rangle = -a^{-3} \langle \bigcirc \rangle.$$

Zum Beispiel ist also $\langle \bigcirc \rangle = -a^3$ und $\langle \bigcirc \rangle = -a^{-3}$, obwohl

beide Diagramme den Unknoten repräsentieren. Also ist $\langle L \rangle$ nur invariant

unter Ω_1 , wenn $a^3 = -1$ gilt. (Allerdings ist dann $\langle L \rangle$ kein Polynom mehr in der Variablen a.)

Dennoch wird das Klammerpolynom die Hauptrolle spielen bei der Konstruktion des Jones-Polynoms, indem durch eine kleine Manipulation diese Obstruktion beseitigt wird. Zunächst Beispiele für das Klammerpolynom:

BEISPIEL 2.1.1 (Hopf-Verschlingung).

$$\langle \bigcirc \rangle = a \langle \bigcirc \rangle + a^{-1} \langle \bigcirc \rangle$$
$$= a(-a^3) + a^{-1}(-a^{-3}) = -a^4 - a^{-4}.$$

Analog erhält man auch

$$\langle \bigcirc \rangle = -a^4 - a^{-4}.$$

ÜBUNG 2.1.2. Man zeige

$$\langle \bigcirc \rangle = a^7 - a^3 - a^{-5}$$

und

$$\langle \bigcirc \rangle = a^{-7} - a^{-3} - a^5.$$

UBUNG 2.1.3. Man berechne das Klammer-Polynom des Achter-Knotens.

ÜBUNG 2.1.4. Ist *L* die triviale Verschlingung aus *n* Komponenten, so ist $\langle L \rangle = c^{n-1} = (-a^2 - a^{-2})^{n-1}$.

Wie schon angemerkt, kann man einen Kreuzungspunkt auf zwei Arten auflösen, indem man L in L_A oder in L_B überführt (vgl. Abbildung 2.1). Insgesamt führt dies zu 2^n verschiedenen Auflösungen des Verschlingungsdiagramms, wobei n die Anzahl der Kreuzungspunkte bezeichnet. Dies führt zu dem Auflösungsbaum des Diagramms. Ein Beispiel ist in Abbildung 2.2 gezeigt.

Legt man in einem Diagramm für jeden Kreuzungspunkt eine der beiden Auflösungsmöglichkeiten A oder B fest, so nennt man dies einen Zustand des Diagramms. Jeder Kreuzungspunkt erhält den Zustand A oder B. Jedes Diagramm mit n Kreuzungspunkten hat 2^n mögliche Zustände. Diese korrespondieren mit den Ergebnissen in der untersten Schicht im Auflösungsbaum.

ABBILDUNG 2.2. Auflösungsbaum des Kleeblattknotens

SATZ 2.1.5. Sei L eine Verschlingung. Es gibt ein eindeutiges bestimmtes Polynom $\langle L \rangle$, das die Relationen (2.1.1), (2.1.2) und (2.1.3) erfüllt.

BEWEIS. Zunächst beweisen wir die *Eindeutigkeit*. Für jeden Zustand s des Diagramms von L sei $\alpha(s)$ die Anzahl der Kreuzungspunkte im Zustand A, sei $\beta(s)$ die Anzahl der Kreuzungspunkte im Zustand B, und sei $\gamma(s)$ die Anzahl der geschlossenen Kreise, die nach Auflösen der Kreuzungspunkte in L_A bzw. L_B (je nach Zustand des jeweiligen Punktes) entstehen. Betrachtung des Auflösungsbaums führt sofort zu der Formel

(2.1.10)
$$\langle L \rangle = \sum_{s} a^{\alpha(s)} b^{\beta(s)} c^{\gamma(s)-1} = \sum_{s} a^{\alpha(s)-\beta(s)} (-a^2 - a^{-2})^{\gamma(s)-1},$$

wobei die Summe über alle Zustände von L läuft. (Für jeden Zustand s verfolge man die Auflösungen entlang des entprechenden Weges im Auflösungsbaum und verwende die Relationen (2.1.1), (2.1.2) und (2.1.3) und Übung 2.1.4.) Dies zeigt, dass $\langle L \rangle$ ein eindeutiges (Laurent-) Polynom in der Variablen a (und a^{-1}) ist.

2. DAS JONES-POLYNOM

Es folgt mit Hilfe dieser Gleichung auch die *Existenz*. Definiert man nämlich $\langle L \rangle$ durch die rechte Seite der Gleichung (2.1.10), so erfüllt dann $\langle L \rangle$ die Relationen (2.1.1), (2.1.3) und (2.1.3): (2.1.2) und (2.1.3) sind offensichtlich. Relation (2.1.1), die den *i*-ten Kreuzungspunkt betrifft, ergibt sich durch Aufspalten der Summe in zwei Summen, wobei jeweils über die Zustände des Diagramms summiert wird, wo der Zustand der *i*-ten Kreuzung A bzw. B ist.

2.2. Das Kauffman-Polynom

Sei L ein orientiertes Verschlingungsdiagramm. Wir betrachten positive und negative Kreuzungen:

ABBILDUNG 2.3. Positive und negative Kreuzung L^+ und $L^$ und deren Auflösung

DEFINITION 2.2.1. Die Verwringung (oder Windungszahl, engl. writhe) w(L) von L ist definiert durch

$$w(L) = \sum_{i=1}^{n} \varepsilon_i,$$

wobei *i jede* Kreuzungen durchläuft und $\varepsilon_i = 1$ oder $\varepsilon_i = -1$, je nachdem, ob die Kreuzung positiv oder negativ ist.

Man beachte den Unterschied zu der Definition in 1.6.7.

BEISPIEL 2.2.2.

$$w(-1) = -1, w(-1) = 2, w(-1) = -3, w(-1)$$

PROPOSITION 2.2.3. (1) Kehrt man in der orientierten Verschlingung L in jeder Komponenten die Orientierung um, so ändert sich die Verwringung w(L) nicht.

(2) Die Verwringung w(L) ist invariant unter den Reidemeister-Bewegungen Ω_2 und Ω_3 .

BEWEIS. (1) Folgt unmittelbar aus der Betrachtung der Bilder von L^+ und L^- in Abbildung 2.3.

(2) Die Argumente sind ähnlich denen im Beweis von Proposition 1.6.10. Ausarbeiten der Details als ÜBUNG. $\hfill \Box$

DEFINITION 2.2.4 (Kauffman-Polynom). Sei L ein orientiertes Verschlingungsdiagramm und |L| das zugehörige nicht-orientierte Diagramm. Dann sei

$$X(L) = (-a)^{-3w(L)} \langle |L| \rangle$$

das Kauffman-Polynom von L. ("Kauffmans Trick")

SATZ 2.2.5. Das Polynom X(L) ist eine Invariante orientierter Verschlingungen.

BEWEIS. Da w(L) und $\langle |L| \rangle$ beide invariant gegenüber den Bewegungen Ω_2 und Ω_3 sind, gilt dies auch für das Produkt $X(L) = (-a)^{-w(L)} \langle |L| \rangle$. Also bleibt die Invarianz unter Ω_1 zu zeigen. Beide, w(L) und $\langle |L| \rangle$, ändern ihr Vorzeichen unter Ω_1 , aber diese heben sich im Produkt weg. Konkret:

$$\langle \bigcirc \rangle = -a^{-3} \langle \bigcirc \rangle$$
 und $w(\bigcirc) = w(\bigcirc) - 1$,

also folgt

$$X(\bigcirc) = (-a^{-3})(-a^3)X(\bigcirc) = X(\bigcirc).$$

BEISPIEL 2.2.6 (Rechts- und linkshändiger Kleeblatt-Knoten). Es gilt

$$X(\bigcirc) = -a^{16} + a^{12} + a^4,$$

$$X(\bigcirc) = -a^{-16} + a^{-12} + a^{-4}.$$

Wir erhalten als wichtige Folgerung:

SATZ 2.2.7. (1) Die Kleeblatt-Knoten lassen sich nicht entknoten.
(2) Links- und rechtshändiger Kleeblatt-Knoten sind verschieden.

Man beachte, dass wir jetzt zum ersten mal einen mathematischen Beweis für die "anschaulich offensichtliche" Aussage (1) haben.

2. DAS JONES-POLYNOM

ÜBUNG 2.2.8. Es gilt $w(L^+) = w(L^0) + 1$, $w(L^-) = w(L^0) - 1$ und (2.2.1) $a(-a)^3 X(L^+) - a^{-1}(-a)^{-3} X(L^-) = (a^2 - a^{-2}) X(L^0).$

ÜBUNG 2.2.9. Man berechne das Kauffman-Polynom vom Achter-Knoten.

2.3. Das Jones-Polynom

DEFINITION 2.3.1 (Jones-Polynom). Sei L ein orientiertes Verschlingungsdiagramm. Substituiert man $a = q^{-1/4}$ im Kauffman-Polynom X(L), so erhält man das Jones-Polynom V(L). Genau genommen ist dies ein sogenanntes Laurent-Polynom, $V(L) \in \mathbb{Z}[q^{1/4}, q^{-1/4}]$ in den Variablen $q^{1/4}$ (und $q^{-1/4}$). (Vgl. aber 2.3.16.) Man beachte, dass durch obige Konstruktion die Existenz des Jones-Polynoms V(L) für jede orientierte Verschlingung L nachgewiesen ist.

SATZ 2.3.2. Das Jones-Polynom V(L) ist eine Invariante orientierter Verschlingungen und erfüllt die folgenden Relationen:

(2.3.1)
$$q^{-1}V(L^+) - qV(L^-) = (q^{1/2} - q^{-1/2})V(L^0)$$

(2.3.2)
$$V(L \sqcup \bigcirc) = -(q^{-1/2} + q^{1/2})V(L)$$

$$(2.3.3) V(\bigcirc) = 1$$

BEWEIS. Dass V(L) eine Invariante ist, ergibt sich aus Satz 2.2.5. Die Relationen ergeben sich direkt mit (2.2.1).

Die Relation (2.3.1) nennt man auch *Entwirrungsrelation* (engl. skein relation). Allgemeiner werden Relationen so genannt, die eine ähnliche Strukur haben, vgl. Abschnitt 3.5.

UBUNG 2.3.3. Man zeige, dass sich Relation (2.3.2) aus den Relationen (2.3.1) und (2.3.3) ergibt.

ÜBUNG 2.3.4. Man berechne das Jones-Polynom für die triviale Verschlingung bestehend aus r Unknoten.

PROPOSITION 2.3.5 (Orientierungswechsel). Sei K ein orientierter Knoten und -K mit umgekehrter Orientierung. Dann gilt

$$V(-K) = V(K).$$

Entsprechendes gilt für Verschlingungen, wenn man die Orientierungen aller Komponenten umkehrt.

BEWEIS. Bei Umkehrung der Orientierung ändert sich die Verwringung nicht, das Klammer-Polynom ist unabhängig von der Orientierung. Also ändert sich das Kauffman-Polynom und damit auch das Jones-Polynom nicht beim Orientierungswechsel.

SATZ 2.3.6. Das Jones-Polynom V(L) ist durch die Relationen (2.3.1), (2.3.2) und (2.3.3) eindeutig bestimmt.

BEWEIS. Es ist zu zeigen, dass das Jones-Polynom einer jeden orientierten Verschlingung L nur mit Hilfe der Relationen (2.3.1)—(2.3.3) berechnet werden kann. Dazu verwenden wir Satz 1.6.4: Sei L eine Verschlingung bestehend aus r Komponenten. Sie werde durch ein Diagramm mit n Kreuzungspunkten dargestellt. Nach 1.6.4 gibt es eine Folge L_1, L_2, \ldots, L_k von Verschlingungen L_i , wobei $L = L_1$ und L_k die triviale Verschlingung bestehend aus r Unknoten ist, und wobei jedes L_{i+1} aus L_i durch einen Kreuzungswechsel entsteht. Dann gilt eine der beiden Relationen

$$(2.3.4) q^{-1}V(L_i) - qV(L_{i+1}) + (q^{-1/2} - q^{1/2})V(L'_i) = 0,$$

(2.3.5)
$$q^{-1}V(L_{i+1}) - qV(L_i) + (q^{-1/2} - q^{1/2})V(L'_i) = 0,$$

wobei L'_i nur n-1 Kreuzungspunkte hat. Da der Wert von $V(L_k)$ bekannt ist (vgl. 2.3.4), kann man sukzessive $V(L_{k-1}), \ldots, V(L_1) = V(L)$, sofern man weiss, wie man die Jones-Polynome der L'_i mit weniger als n Kreuzungspunkten berechnet. Per Induktion können wir dies annehmen, und es folgt die Behauptung.

BEISPIEL 2.3.7 (Kleeblatt-Knoten). Wir wenden oben beschriebene Methode an: Relation (2.3.1) liefert

$$q^{-1}V(\bigcirc) - qV(\bigcirc) = (q^{1/2} - q^{-1/2})V(\bigcirc)$$

Der linke Knoten ist der Unknoten, liefert also den Wert 1. Der rechte ist die Hopf-Verschlingung. Relation (2.3.1) dafür angewendet ergibt

$$q^{-1}V(\bigcirc) - qV(\bigcirc) = (q^{1/2} - q^{-1/2})V(\bigcirc)$$

Mit den Relationen (2.3.2) und (2.3.3) ergibt sich

$$V(\bigcirc) = -q^{-2}(q^{1/2} + q^{-1/2}) - q^{-1}(q^{1/2} - q^{-1/2})$$
$$= -q^{-1/2} - q^{-5/2},$$

und es folgt

$$V(\bigcirc) = q^{-2} + q^{-1}(q^{1/2} - q^{-1/2})(q^{-1/2} + q^{-5/2})$$
$$= q^{-1} + q^{-3} - q^{-4}.$$

ÜBUNG 2.3.8. Man berechne das Jones-Polynom vom Achter-Knoten nur mit Hilfe der Relationen (2.3.1)-(2.3.3).

UBUNG 2.3.9. Man berechne das Jones-Polynoms folgenden Knotens, einmal mit Hilfe des Klammer-Polynoms, ein anderes mal mit Hilfe der Relationen (2.3.1)-(2.3.3).

ABBILDUNG 2.4. Knoten zum Berechnen des Jones-Polynoms

Der linkshändige Kleeblatt-Knoten ist das *Spiegelbild* des rechtshändigen Kleeblattknotens. Wir hatten schon gesehen, das sich die Kauffman-Polynome dieser beiden Knoten dadurch unterscheiden, dass die Variable a durch a^{-1} ersetzt wird. Entsprechendes gilt für das Jones-Polynom. Allgemein:

SATZ 2.3.10 (Spiegelbild). Sei K ein orientierter Knoten und K^* das Spiegelbild. Dann gilt

$$V(K^*)(q) = V(K)(q^{-1}).$$

In Worten: Das Jones-Polynom des Spiegelbildes erhält man, indem man q durch q^{-1} ersetzt.

BEWEIS. Wir schauen uns nochmal den Beweis von Satz 2.3.6 an mit L = K. Da $L = L_1, L_2, \ldots, L_k$ durch sukzessive Kreuzungswechsel den Unknoten L_k liefern, gilt dies offenbar auch für die Folge der Spiegelbilder $L^* = L_1^*, L_2^*, \ldots, L_k^*$. Hier haben die Kreuzungen jeweils umgekehrte Vorzeichen. Es folgt, dass wenn für L_i eine der beiden Relationen (2.3.4) oder (2.3.5) gilt, für L_i^* gerade die andere Relation gilt, wobei dort alle vorkommenden Verschlingungen durch ihre Spiegelbilder zu ersetzen sind. Konkret: Gilt etwa (2.3.4), also

$$q^{-1}V(L_i) - qV(L_{i+1}) + (q^{-1/2} - q^{1/2})V(L'_i) = 0,$$

so folgt

$$q^{-1}V(L_{i+1}^*) - qV(L_i^*) + (q^{-1/2} - q^{1/2})V((L_i')^*) = 0$$

Multipliziert man die letzte Gleichung mit -1 und ersetzt q durch q^{-1} , so bekommt man

$$(2.3.6) \quad q^{-1}V(L_i^*)(q^{-1}) - qV(L_{i+1}^*)(q^{-1}) + (q^{-1/2} - q^{1/2})V((L_i')^*)(q^{-1}) = 0.$$

Man führt nun wieder eine doppelte Induktion. Zunächst nimmt man induktiv an, die Behauptung sei für Knoten mit weniger Überkreuzungen schon gezeigt, d. h. es gilt $V((L'_i)^*)(q) = V(L'_i)(q^{-1})$. Man sieht, dass man jetzt sukzessive ausgehend vom Unknoten $L_k = L_k^*$ sowohl $L_{k-1}, \ldots, L_1 = K$ wie auch $L^*_{k-1}, \ldots, L^*_1 = K^*$ berechnen kann. Ist $V(L^*_{i+1})(q) = V(L_{i+1})(q^{-1})$ schon gezeigt, so folgt aus (2.3.4), den Induktionsvoraussetzungen und schließlich aus (2.3.6)

$$V(L_i) = q \left(q V(L_{i+1}) - (q^{-1/2} - q^{1/2}) V(L'_i) \right)$$

= $q \left(q V(L^*_{i+1})(q^{-1}) - (q^{-1/2} - q^{1/2}) V((L'_i)^*)(q^{-1}) \right)$
= $V(L^*_i)(q^{-1}),$

und dies beendet den Beweis.

DEFINITION 2.3.11. Ein Knoten heißt *amphichiral* oder *spiegelsymmetrisch*, falls er äquivalent ist zu seinem Spiegelbild.

UBUNG 2.3.12. Man zeige, dass für jeden spiegelsymmetrischen Knoten K die Verwringung w(K) = 0 ist.

UBUNG 2.3.13. Man zeige, dass der Achter-Knoten spiegelsymmetrisch ist, die Kleeblatt-Knoten jedoch nicht.

DEFINITION 2.3.14. Ein orientierter Knoten heißt *chiral* oder *umkehrbar*, falls er äquivalent zu sich mit umgekehrter Orientierung ist.

ÜBUNG 2.3.15. Man zeige, dass die Kleeblatt-Knoten umkehrbar sind.

SATZ 2.3.16. (1) Falls die Anzahl der Komponenten der orientierten Verschlingung L ungerade ist (also wenn z. B. L ein Knoten ist), so enthält das Jones-Polynom nur Terme der Form q^k (mit $k \in \mathbb{Z}$).

(2) Falls die Anzahl der Komponenten der orientierten Verschlingung L gerade ist, so enthält das Jones-Polynom nur Terme der Form $q^{(2k+1)/2}$ (mit $k \in \mathbb{Z}$).

BEWEIS. Die triviale Verschlingung bestehend aus m Komponenten hat das Jones-Polynom

$$(-q^{-1/2} - q^{1/2})^{m-1} = q^{(m-1)/2}(-q^{-1} - 1)^{m-1},$$

also gilt die Behauptung für die trivialen Verschlingungen. Das Jones-Polynom einer beliebigen orientierten Verschlingung L kann sukzessive mit der Relation (2.3.1) aus der trivialen Verschlingung berechnet werden. Wir vergleichen

die vorkommenden Verschlingungen L^+ , L^- und L^0 . Deren Anzahl von Komponenten sei m_+ , m_- bzw. m_0 . Wir schauen uns die Paritäten (d. h. gerade oder ungerade) dieser Zahlen an. Offenbar gilt $m_+ = m_-$. Weiterhin ist $m_+ = m_0 \pm 1$, wie man den beiden Fällen dargestellt in folgender Abbildung entnimmt. Also haben m_+ und m_- gleiche Parität, m_+ und m_0 unterschied-

ABBILDUNG 2.5. Es gilt $m_+ = m_0 \pm 1$

liche Parität. Daraus ergibt sich, dass wenn die Aussage des Satzes für je zwei Terme in der Relation (2.3.1) richtig ist, dies auch für den dritten Term gilt. Induktiv folgt damit die Aussage.

2.4. Summe von Knoten und Verschlingungen

DEFINITION 2.4.1 (Summe). Die Komposition oder Summe $K_1 \# K_2$ zweier Knoten K_1 und K_2 wird wie in Abbildung 2.6 definiert. Handelt es sich um

ABBILDUNG 2.6. Die Summe zweier Knoten

orientierte Knoten, so werden die Knoten so verschmolzen, dass das Ergebnis wieder orientiert ist. Analog wird die Summe $L_1 \# L_2$ für Verschlingungen L_1 und L_2 definiert. Hier wird eine Komponente von L_1 mit einer Komponenten L_2 wie oben beschrieben verschmolzen.

BEMERKUNG 2.4.2. (1) Die Summe $K_1 \# K_2$ zweier Knoten ist unabhängig von der Stelle, an der die Knoten verbunden werden. Für Verschlingungen hängt dies von den gewählten Komponenten ab. Trotzdem benutzen wir auch für Verschlingungen das Symbol $L_1 \# L_2$, mit dieser Mehrdeutigleit im Hinterkopf.

(2) Für Knoten K_1 und K_2 ist $K_1 \# K_2$ äquivalent zu $K_2 \# K_1$. (Es gilt eine ähnliche Aussage für die Assoziativität. Es verhält sich offenbar der
Unknoten neutral bzgl. der Summenbildung, so dass wir eine kommutative Halbgruppe mit neutralem Element bekommen.)

BEWEIS. Anschaulich: Hat man K_1 und K_2 miteinander verschmolzen, so dass sie $K_1 \# K_2$ bilden, K_1 links, K_2 rechts, so lässt man durch ambient isotope Abänderungen K_2 "sehr klein" werden. Die "Schnüre" des Knoten K_2 werden sozusagen zusammengezogen. Dann lässt man diesen kleinen Knoten entlang seiner "eigenen Schnur" "entlanggleiten", dann an der "Schnur" des anderen Knoten. (Dabei wurde K_2 so klein gemacht, dass er nicht mit anderen "Schnüren" in Berührung kommt.) Ist dann eine Position erreicht, dass der kleine Knoten links und der große rechts liegt, so "lockert" man die Schnüre des kleinen Knoten wieder und hat als Ergebnis $K_2 \# K_1$, also folgt $K_1 \# K_2 \simeq K_2 \# K_1$. Stoppt man an einer beliebigen anderen Stelle, so zeigt dasselbe Argument, dass die genaue Position des Verschmelzens keine Rolle spielt.

BEMERKUNG 2.4.3. Man definiert *Primknoten* analog zu Primzahlen: Ein Knoten K heißt *prim*, falls aus $K \simeq K_1 \# K_2$ folgt, dass K_1 oder K_2 der Unknoten ist. Ein Satz von H. Schubert (1949) besagt, dass jeder Knoten eine eindeutige Zerlegung in Primknoten hat. Dies ist ein Analogon des Hauptsatzes der Arithmetik.

SATZ 2.4.4. Seien L_1 und L_2 zwei orientierte Verschlingungen. Dann gilt $V(L_1 \# L_2) = V(L_1) \cdot V(L_2)$

und

$$V(L_1 \sqcup L_2) = -(q^{-1/2} + q^{1/2}) \cdot V(L_1) \cdot V(L_2).$$

BEWEIS. Die Kreuzungspunkte von $L_1 \# L_2$ bzw. von $L_1 \sqcup L_2$ ergeben sich als Vereinigung der Kreuzungspunkte von L_1 und der Kreuzungspunkte von L_2 . Einem Paar (s_1, s_2) von Zuständen s_i von L_i kann man Zustände $s_{\#}$ von $L_1 \# L_2$ bzw. s_{\sqcup} von $L_1 \sqcup L_2$ zuordnen. Zur Abkürzung schreiben wir $\alpha_1 = \alpha(s_1)$ (= zum Zustand s_1 des Diagramms zu L_1 die Anzahl der Kreuzungspunkte im Zustand A), $\alpha_{\#} = \alpha(s_{\#})$, etc. Offenbar gilt

$$\alpha_{\#} = \alpha_{\sqcup} = \alpha_1 + \alpha_2, \ \beta_{\#} = \beta_{\sqcup} = \beta_1 + \beta_2,$$

und

$$\gamma_{\#} = \gamma_1 + \gamma_2 - 1, \ \gamma_{\sqcup} = \gamma_1 + \gamma_2.$$

Es folgt dann für die Klammerpolynome

$$\langle L_1 \# L_2 \rangle = \sum_{s_\#} a^{\alpha_\#} b^{\beta_\#} c^{\gamma_\# - 1} = \sum_{s_1, s_2} a^{\alpha_1 + \alpha_2} b^{\beta_1 + \beta_2} c^{\gamma_1 + \gamma_2 - 2}$$

$$= \left(\sum_{s_1} a^{\alpha_1} b^{\beta_1} c^{\gamma_1 - 1} \right) \left(\sum_{s_2} a^{\alpha_2} b^{\beta_2} c^{\gamma_2 - 1} \right) = \langle L_1 \rangle \langle L_2 \rangle.$$

Ahnlich ergibt sich

$$\langle L_1 \sqcup L_2 \rangle = c \sum_{s_1, s_2} a^{\alpha_1 + \alpha_2} b^{\beta_1 + \beta_2} c^{\gamma_1 + \gamma_2 - 2} = c \langle L_1 \rangle \langle L_2 \rangle.$$

Schließlich gilt für die Verwringungen offenbar

$$w(L_1 \# L_2) = w(L_1) + w(L_2) = w(L_1 \sqcup L_2).$$

Man erhält für die Kauffman-Polynome

$$X(L_1 \# L_2) = X(L_1)X(L_2)$$
 und $X(L_1 \sqcup L_2) = cX(L_1)X(L_2).$

Nach Substitution $a = q^{-1/4}$ folgt entsprechendes für die Jones-Polynome.

ÜBUNG 2.4.5. Man beweise, dass die folgenden Verschlingungen (bei geeigneter Orientierung) dasselbe Jones-Polynom haben. Man zeige, dass die beiden Verschlingungen nicht ambient isotop sind.

ABBILDUNG 2.7. Unterschiedliche Verschlingungen mit selbem Jones-Polynom

BEMERKUNG 2.4.6. (1) Vorstehende Übung zeigt, dass das Jones-Polynom *keine vollständige* Verschlingungsinvariante ist. Dies gilt auch, wenn man sich auf Knoten beschränkt:

(2) Man kann zeigen, dass die beiden Knoten in Abbildung 2.8 nicht ambient isotop sind, aber gleiches Jones-Polynom haben.

ÜBUNG 2.4.7. Sei *L* eine orientierte Verschlingung bestehend aus *r* Komponenten. Man zeige $V(L)(1) = (-2)^{r-1}$.

ÜBUNG 2.4.8. Man zeige, dass das Jones-Polynom einer orientierten Verschlingung niemals das Nullpolynom sein kann.

ÜBUNG 2.4.9. Sei $L = (K_1, K_2)$ eine orientierte Verschlingung bestehend aus zwei Komponenten K_1 und K_2 . Man zeige:

$$V(K_1, -K_2) = q^{-3w(K_2, K_1)} \cdot V(K_1, K_2),$$

wobei $w(K_2, K_1)$ die in 1.6.7 definierte Windungszahl ist und $(K_1, -K_2)$ die orientierte Verschlingung, wobei die Orientierung von K_2 umgekehrt wurde.

ABBILDUNG 2.8. Unterschiedliche Knoten mit selbem Jones-Polynom

 $\ddot{\mathrm{U}}\mathrm{BUNG}$ 2.4.10. Man berechne das Jones-Polynom des Knotens aus $\ddot{\mathrm{U}}\mathrm{bung}$ 2.3.9 auf eine dritte Weise.

KAPITEL 3

Knoten und Zöpfe

3.1. Die Artinsche Zopfgruppe

3.1.1 (Geometrische Definition). Sei n eine natürliche Zahl. Im Raum \mathbb{R}^3 betrachte man die Punkte $A_i = (i, 0, 0)$ und $B_i = (i, 0, 1)$, für $i = 1, \ldots, n$. Ein Polygonzug, der ein A_i mit einem B_j verbindet heißt *aufsteigend*, falls eine Bewegung auf dem Polygonzug bzgl. der z-Koordinate (streng) monoton wachsend verläuft. Ein solcher Polygonzug heißt auch Strang.

Ein *n-strängiger Zopf* besteht aus *n* sich nicht-schneidenden aufsteigenden Polygonzügen, die die Punkte A_1, \ldots, A_n mit den Punkten B_1, \ldots, B_n (in irgendeiner Ordnung) verbinden. Formaler: Es gibt eine Permutation $\sigma \in S_n$, so dass der *i*-te Polygonzug (Strang) den Punkt A_i mit dem Punkt $B_{\sigma(i)}$ verbindet.

ABBILDUNG 3.1. Beispiele von Zöpfen

(Kombinatorische) Äquivalenz von Zöpfen ist ähnlich definiert wie die (kombinatorische) Äquivalenz polygonaler Knoten und Verschlingungen (vgl. 1.4.4), wobei man hier zusätzlich fordert, dass das beim Dreieck ACB jeder der Kantenzüge [AB] und $[AC] \cup [CB]$ auf- bzw. absteigend verläuft.

Wie auch bei Knoten und Verschlingungen werden gleichwertig auch glatte und zahme stetige Zöpfe mit den jeweiligen Äquivalenzbegriffen betrachtet. Wir verzichten auf die detaillierte Beschreibung. Ebenfalls werden wir meist Zöpfe mit ihren Äquivalenzklassen identifizieren. 3.1.2 (Gruppenstruktur). Bemerkenswert ist, dass auf der Menge der (Äquivalenzklassen der) *n*-strängigen Zöpfe in natürlicher Weise eine Gruppenstruktur vorhanden ist. Verknüpft werden zwei Zöpfe durch Übereinanderlegen, wie im folgenden Bild:

Dies ergibt offenbar eine wohldefinierte und assoziative Verknüpfung. Neutrales Element ist gegeben durch den trivialen Zopf:

Jeder Zopf kann invertiert werden, indem man ihn an der Eben
ez=1/2 spiegelt:

Bezeichne die Gruppe der *n*-strängigen Zöpfe mit B_n . Sie heißt die Zopfgruppe in *n*-Strängen.

3.1.3 (Erzeugende Elemente). Definiere Elemente $b_1, b_2, \ldots, b_{n-1} \in B_n$ wie folgt.

Die Elemente b_1, \ldots, b_{n-1} werden auch als *elementare Zöpfe* bezeichnet.

3.1.4. Wie bei (regulären) Knotendiagrammen wollen wir nur eine bestimmte Sorte von Projektionen von Zöpfen zulassen. Diese wird durch die nachstehende Bedingungen (1)-(3) erklärt.

Anschaulich ist klar, dass in der Äquivalenzklasse eines n-strängigen Zopfes ein Repräsentant liegt, der eine Projektion auf die xz-Ebene mit folgenden Eigenschaften hat:

- (1) Die Projektionen der Stränge sind nicht tangential zueinander.
- (2) Kein Punkt der xz-Ebene ist Projektion dreier oder mehrerer Punkte des Zopfes.
- (3) Die Kreuzungspunkte liegen alle auf unterschiedlichen Niveaus (über xy-Ebene).

PROPOSITION 3.1.5. Die Elemente b_1, \ldots, b_{n-1} erzeugen die Gruppe B_n .

Nach Definition heißt das, dass jedes Element $b \in B_n$ als ein *Wort* in den *Buchstaben* b_1, \ldots, b_{n-1} sowie deren Inversen $b_1^{-1}, \ldots, b_{n-1}^{-1}$ geschrieben werden kann. Z. B. wäre $b = b_1 b_2^{-1} b_3^2 b_3^{-1} b_1$ ein solches Wort. Man beachte, dass eine solche Darstellung nicht eindeutig ist, denn wegen $b_3 b_3^{-1} = 1$ kann obiges Wort *reduziert* werden zu $b = b_1 b_2^{-1} b_3 b_1$. Wir werden sehen, dass es noch weitere *Relationen* zwischen b_1, \ldots, b_{n-1} gibt.

BEWEIS DER PROPOSITION. Sei $b \in B_n$. Man wählt einen Repräsentanten von b, dessen Projektion die Eigenschaften (1)–(3) hat. Insbesondere liegen die Kreuzungspunkte auf verschiedenen Niveaus. Dann ist die Aussage aber unmittelbar klar, wie folgendes Beispiel zeigt: 3. KNOTEN UND ZÖPFE

Dieser Zopf ist offenbar von der Form $b_1b_3^{-1}b_2b_1b_3^{-1}$.

3.1.6 (Die Artin-Relationen). 1. Triviale Relationen. $b_i b_i^{-1} = 1 = b_i^{-1} b_i$ (i = 1, ..., n - 1) Diese Relationen gelten in *jeder* Gruppe und sind daher keine besondere Eigenschaft der Zopfgruppe. Geometrisch hat man folgendes Bild:

Man beachte die formale Ähnlichkeit zur Reidemeister-Bewegung Ω_2 . Im Übergang verletzt obige Bewegung die Eigenschaft (1) einer Projektion.

2. Zopf-Relationen. $b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$ (i = 1, ..., n-2) Diese Relation wird durch folgendes Bild veranschaulicht und auch verifiziert:

Hier beachte man die formale Ähnlichkeit zur Reidemeister-Bewegung Ω_3 . Im Übergang verletzt obige Bewegung die Eigenschaft (2) einer Projektion. Mit ähnlichen Bildern zeigt man, dass auch die (äquivalenten) Relationen $b_i b_{i+1} b_i^{-1} = b_{i+1}^{-1} b_i b_{i+1}$ und $b_i^{-1} b_{i+1} b_i = b_{i+1} b_i b_{i+1}^{-1}$ gelten.

Im Ubergang verletzt obige Bewegung die Eigenschaft (3) einer Projektion.

SATZ 3.1.7 (Artin 1925). Die Zopfgruppe B_n ist definiert durch Erzeuger b_1, \ldots, b_{n-1} und Relationen

$$b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$$
 $(i = 1, \dots, n-1)$

und

$$b_i b_j = b_j b_i \ (|i - j| \ge 2).$$

Die Sprechweise bedeutet (per definitionem), dass außerdem die (in jeder Gruppe geltenden) trivialen Relationen $b_i b_i^{-1} = 1 = b_i^{-1} b_i$ gelten, und dass jede weitere Relation schon aus den im Satz beschriebenen Relationen zustande kommt.

BEWEIS DES SATZES. Es ist bereits gezeigt, dass b_1, \ldots, b_{n-1} Erzeuger von B_n sind, die die Zopfrelationen und die ferne Kommutativität erfüllen. Es ist noch zu zeigen, dass sich jede weitere Relation aus diesen ergibt. Indem man Terme durch Inversenbildung auf die andere Seite bringt, kann man eine Relation immer in der Form $w(b_1^{\pm}, \ldots, b_{n-1}^{\pm}) = 1$ schreiben, wobei $w = w(b_1^{\pm}, \ldots, b_{n-1}^{\pm})$ ein Wort in den Buchstaben b_1, \ldots, b_{n-1} und deren Inversen ist. Geometrisch bedeutet dies, dass wir einen Zopf b in n Strängen haben, der äquivalent ist zum trivialen Zopf. Zu zeigen ist, dass sich b nur mit Hilfe der Bewegungen, die in 3.1.6 beschrieben wurden bei den Zopfrelationen, der fernen Kommutativität sowie den trivialen Relationen, und durch planare Isotopien (analog definiert wie bei den Knotendiagrammen) in den trivialen Zopf überführen lässt. Nach Definition der (kombinatorischen) Aquivalenz genügt es zu zeigen, dass sich eine elementare Deformation $[AB] \mapsto [AC] \cup [CB]$ durch eine Folge von Anwendungen dieser speziellen Bewegungen realisieren lässt. Dies zeigt man ähnlich wie im Beweis des Satzes von Reidemeister 1.5.7.

Man zerlegt das Dreieck [ACB] in kleinere Dreiecke des Typs I—IV wie in 1.5.7. Zusätzlich sorgt man dafür, dass diese Dreiecke aufsteigend liegen. Das folgende Bild zeigt, wie eine elementare Deformation über ein Dreieck des (kompliziertesten) Typs I durch triviale und Zopfrelationen realisiert wird:

(Hierbei ist unerheblich, ob die roten Linien unterhalb oder oberhalb des Dreiecks liegen.) Zunächst wurde eine triviale Relation angewendet, dann eine weitere triviale, und zuletzt die Zopfrelation. Mit zwei weiteren trivialen Relationen setzt man die Bewegung über das gesamte Dreieck fort. Ähnlich argumentiert man bei den Typen II—IV. Man beachte noch, dass eine elementare (Dreiecks-) Bewegung eine planare Isotopie bewirken kann, bei der zwischendurch eine "verbotene" Projektion eines Zopfes auftritt, bei der sich Kreuzungspunkte auf gleichem Niveau befinden. Dies ist aber eine Bewegung, wie sie bei der fernen Kommutativität in 3.1.6 beschrieben wurde. □

ÜBUNG 3.1.8. (a) Sei $B_3 = \langle b_1, b_2 | b_1 b_2 b_1 = b_2 b_1 b_2 \rangle$. Man zeige, dass $c = (b_1 b_2)^3$ im Zentrum der Gruppe B_3 liegt.

(b) Man zeige, dass in B_3 die Relation $b_1b_2b_1^{-1} = b_2^{-1}b_1b_2$ gilt.

(c) Man zeige, dass man die Gruppe B_3 auch durch Erzeuger a und b mit Relation $a^3 = b^2$ beschreiben kann. (Man betrachte die Elemente b_1b_2 und $b_1b_2b_1$.)

3.2. Die Sätze von Alexander und Markov

DEFINITION 3.2.1. Zu jedem Zopf $b \in B_n$ definiere den Abschluss $\beta(b) = \beta_n(b) = \hat{b}$ als die Verschlingung L wie in Abbildung 3.2 illustriert.

Sei \mathcal{L} die Menge aller Äquivalenzklassen von Verschlingungen. Es ist also $\beta = \beta_n : B_n \longrightarrow \mathcal{L}$ eine Abbildung.

Wann ist $\beta(b)$ ein Knoten?

Jedem Zopf $B \in B_n$ kann man eine Permutation $\sigma(b) \in S_n$ zuordnen, die die Endpunkte $1, \ldots, n$ durch seine Stränge permutiert. Dies liefert einen surjektiven Gruppenhomomorphismus $\sigma : B_n \longrightarrow S_n$, der schon durch die

ABBILDUNG 3.2. Abschluss eines Zopfes

Zuordnung $b_i \mapsto \tau(i, i+1)$ eindeutig beschrieben wird. (Man beachte, dass jede Relationen, die für die b_i gilt auch für die $\tau(i, i+1)$ gilt. In der Tat erfüllen letztere sogar zusätzlich die Relationen $\tau(i, i+1)^2 = 1$.)

PROPOSITION 3.2.2. Set $b \in B_n$. Dann ist $\beta(b)$ ein Knoten genau dann, wenn $\sigma(b) \in S_n$ ein Zykel der Länge n ist.

BEWEIS. $\beta(b)$ ist Knoten genau dann, wenn beim Durchlaufen jeder Endpunkt erreicht wird, genau dann, wenn $\sigma(b)$ ein Zykel der Länge n ist. \Box

SATZ 3.2.3 (Alexander 1923). Sei L eine Verschlingung. Dann gibt es ein $n \in \mathbb{N}$ und ein $b \in B_n$, so dass L äquivalent ist zu $\beta(b)$.

Sei $\coprod_{n\geq 1} B_n$ die *disjunkte* Vereinigung der B_n . Dann besagt der Satz von Alexander gerade, dass die kanonisch definierte Abbildung

$$\beta: \coprod_{n\geq 1} B_n \longrightarrow \mathcal{L}$$

surjektiv ist.

BEWEIS DES SATZES. Die Idee des Beweises ist schnell erläutert. Sei L ein orientiertes Verschlingungsdiagramm (polygonal), welches in der Ebene E liegt. Sei $p \in E$ ein Punkt, der nicht auf L liegt. Man sagt, L läuft um p, falls jede Kante von p aus gesehen positiv orientiert ist (gegen den Uhrzeigersinn), wie in Abbildung 3.3 angedeutet. Hat man eine solche Situation, so "zerschneidet" man die Verschlingung längs einer Geraden in p beginnenden Geraden und rollt ihn aus zu einen Zopf, dessen Abschluss gerade L ist (Abbildung 3.3). Ist dies nicht der Fall, so wird L äquivalent zu L' abgeändert, so dass L' um p läuft ("Alexander-Trick"). Ist etwa [AB] eine negative Kante, so ersetzt man diese wie in Abbildung 3.4 angedeutet durch die positiven Kanten [AC] und [CB].

ABBILDUNG 3.3. Ausrollen eines umlaufenden Knotens

ABBILDUNG 3.4. Der Alexander-Trick

3.2.4 (Orientierung). Jeder Zopf hat eine natürliche Orientierung, indem jeder Strang von einem A_i zu einem B_j zeigt. Dann liefert der Abschluss β eine orientierte Verschlingung. Der Beweis vom Satz von Alexander zeigt, dass jede orientierte Verschlingung Abschluss eines orientierten Zopfes ist.

UBUNG 3.2.5. Sei der Unknoten dargestellt als ein Quadrat, welches mit "falscher" Orientierung um seinen Schwerpunkt läuft. Man wende den Alexander Trick (vierfach) an und bestimme den zugehörigen ausgerollten Zopf.

ÜBUNG 3.2.6. Man bestimme jeweils die Zöpfe zu den beiden orientierten Hopf-Verschlingungen.

Jeden n-strängigen Zopf kann man auch als n + 1-strängigen Zopf auffassen, dessen n + 1-ter Strang trivial ist. Man bekommt also kanonische Einbettungen

$$B_1 \subset B_2 \subset B_3 \subset \cdots \subset B_n \subset B_{n+1} \subset \cdots$$

Sei $B_{\infty} = \bigcup_{n \ge 1} B_n$. Die Gruppenstruktur auf jedem B_n induziert eine Gruppenstruktur auf B_{∞} . Ist $b \in B_n$, so ist es auch in B_m für jedes $m \ge n$. Es unterscheidet sich $\beta_m(b)$ von $\beta_n(b)$ durch m - n Unknoten. Man kann $\beta : B_{\infty} \longrightarrow \mathcal{L}$ definiere: Für $b \in B_{\infty}$ definiere $\beta(b) = \beta_n(b)$, wobei n minimal ist mit $b \in B_n$.

3.2.7 (Markov-Bewegungen). Bei den Markov-Bewegungen handelt es sich um Transformationen in B_{∞} :

Erste Markov-Bewegung: $b \leftrightarrow aba^{-1}$, wobei $a, b \in B_n$ Zweite Markov-Bewegung: $b \leftrightarrow bb_n^{\pm 1}$ wobei $b \in B_n \subset B_{n+1}$.

Den folgenden wichtigen Satz werden wir hier nicht beweisen. Wir zeigen nur die triviale Richtung. Ein Beweis des Satzes wurde 1936 von Markov mündlich verbreitet, jedoch niemals von ihm veröffentlicht. Die erste Veröffentlichung des Beweises geht auf Joan Birman (1974) zurück.

SATZ 3.2.8 (Markov). Die Abschlüsse zweier Zöpfe b und b' (in n bzw. n' Strängen) sind äquivalente orientierte Verschlingungen genau dann, wenn b durch eine endliche Folge von Markov-Bewegungen in in b' überführt werden kann.

Es ist einfach zu sehen, dass erste und zweite Markov-Bewegung beim Abschluss äquivalente Verschlingungen liefern, vgl. Abbildungen 3.5 und 3.6.

ABBILDUNG 3.5. 1. Markov-Bewegung liefert äquivalente Verschlingungen

BEMERKUNG 3.2.9. Mit der Invarianz $\beta_{n+1}(bb_n) \sim \beta_n(b)$ $(b \in B_n)$ ergibt sich aus dem Satz von Alexander, dass die Abbildung $\beta : B_{\infty} \longrightarrow \mathcal{L}$ surjektiv ist. In der Tat: Sei *L* eine Veschlingung. Nach dem Satz von Alexander gibt es ein $n \ge 1$ und ein $b \in B_n$ mit $\beta_n(b) \sim L$. Dann ist aber auch $\beta_{n+1}(bb_n) \sim L$, und offenbar ist n + 1 der minimale Index *i* mit $bb_n \in B_i$.

ABBILDUNG 3.6. 2. Markov-Bewegung liefert äquivalente Verschlingungen

ÜBUNG 3.2.10. Man zeige mit Hilfe der Markov-Bewegungen, dass $b_2b_1 \in B_3$ den Unknoten ergibt.

ÜBUNG 3.2.11. Es ist $B_2 = \langle b_1 \rangle$. Für $n \ge 0$ sei $Q_n = \beta(b_1^n)$ die *n*-fache Quaste. Es soll das Jones-Polynom $V(Q_n)$ berechnet werden.

- (a) Man berechne $V(Q_0)$ und $V(Q_1)$.
- (b) Man zeige folgende Rekursionsformel (für $n \ge 2$):

$$V(Q_n) = q^{-2} V(Q_{n-2}) - (q^{-1/2} - q^{-3/2}) V(Q_{n-1}).$$

(c) Man zeige per Induktion (für $n \ge 1$):

$$V(Q_{2n+1}) = q^{-n} + q^{-n-2} + \sum_{i=1}^{2n-1} (-1)^i q^{-n-2-i}$$
$$V(Q_{2n}) = -q^{-(2n-1)/2} + \sum_{i=1}^{2n-1} (-1)^i q^{-(2n+1+2i)/2}$$

(d) Man folgere: $B_2 \simeq \mathbb{Z}$.

3.3. Die Yang-Baxter Gleichung

3.3.1 (Tensorprodukt). Seien V und W endlichdimensionale Vektorräume über dem Körper K der Dimensionen m bzw. n. Seien Basen v_1, \ldots, v_m von V und w_1, \ldots, w_n von W gegeben. Dann ist das *Tensorprodukt* $V \otimes W$ ein K-Vektorraum mit folgenden Eigenschaften

- (1) Es gibt eine bilineare Abbildung $\tau : V \times W \longrightarrow V \otimes W$, $(v, w) \mapsto v \otimes w$.
- (2) eine K-Basis von $V \otimes W$ ist gegeben durch $v_i \otimes w_j$ i = 1, ..., m, j = 1, ..., n. Insbesondere dim_K $(V \otimes W) = m \cdot n$.

Bilinearität von τ bedeutet:

$$\alpha(v \otimes w) = (\alpha v) \otimes w = v \otimes (\alpha w)$$
$$(v + v') \otimes w = v \otimes w + v' \otimes w$$
$$v \otimes (w + w') = v \otimes w + v \otimes w'$$

für alle $v v' \in V, w, w' \in W$ und $\alpha \in K$.

(3) Seien $f: V \longrightarrow V$ und $g: W \longrightarrow W$ lineare Abbildungen. Definiere eine lineare Abbildung $f \otimes g: V \otimes W \longrightarrow V \otimes W$ auf der Basis durch $v_i \otimes w_j \mapsto f(v_i) \otimes g(w_j)$. Es gilt dann

 $(f \otimes g)(v \otimes w) = f(v) \otimes g(w)$ für alle $v \in V, w \in W$.

Sei nämlich $v = \sum_i \alpha_i v_i$ und $w = \sum_j \beta_j w_j$. Dann ist wegen der Bilinearität

$$v \otimes w = \sum_{i} \sum_{j} \alpha_i \beta_j v_i \otimes w_j,$$

also

$$(f \otimes g)(v \otimes w) \stackrel{Def}{=} \sum_{i} \sum_{j} \alpha_{i} \beta_{j} f(v_{i}) \otimes g(w_{j}) \stackrel{bilin.}{=} f(v) \otimes g(w).$$

(4) Sind f und g bijektiv, so ist auch $f \otimes g$ bijektiv.

(5) Sei $A = (\alpha_{ij}) \in M_m(K)$ die Darstellungsmatrix von f bzgl. der Basis (v_i) , und sei $B = (\beta_{ij}) \in M_n(K)$ die Darstellungsmatrix von g bzgl. der Basis (w_i) . Dann hat $f \otimes g$ bzgl. der Basis $(v_i \otimes w_j)$ offenbar die Darstellungsmatrix

$$\begin{pmatrix} \alpha_{11}B & \alpha_{12}B & \cdots & \alpha_{1m}B \\ \alpha_{21}B & \alpha_{22}B & \cdots & \alpha_{2m}B \\ \vdots & \vdots & & \vdots \\ \alpha_{m1}B & \alpha_{m2}B & \cdots & \alpha_{mm}B \end{pmatrix}$$

Für m = 2 = n hat man also die Darstellungsmatrix

$$\begin{pmatrix} \alpha_{11}B & \alpha_{12}B \\ \alpha_{21}B & \alpha_{22}B \end{pmatrix} = \begin{pmatrix} \alpha_{11}\beta_{11} & \alpha_{11}\beta_{12} & \alpha_{12}\beta_{11} & \alpha_{12}\beta_{12} \\ \alpha_{11}\beta_{21} & \alpha_{11}\beta_{22} & \alpha_{12}\beta_{21} & \alpha_{12}\beta_{22} \\ \alpha_{21}\beta_{11} & \alpha_{21}\beta_{12} & \alpha_{22}\beta_{11} & \alpha_{22}\beta_{12} \\ \alpha_{21}\beta_{21} & \alpha_{21}\beta_{22} & \alpha_{22}\beta_{21} & \alpha_{22}\beta_{22} \end{pmatrix}.$$

(6) Sind U, V, W Vektorräume, so kann man auch das Tensorprodukt $U \otimes V \otimes W = (U \otimes V) \otimes W = U \otimes (V \otimes W)$ betrachten. Entsprechendes für mehrere Vektorräume. Ist $n \geq 1$ eine natürliche Zahl, so bezeichne $V^{\otimes n} = V \otimes V \otimes \cdots \otimes V$ (*n* Kopien). Entsprechendes gelte für lineare Abbildungen.

(7) Für $f_1, f_2 \in \text{End}(V)$ und $g_1, g_2 \in \text{End}(W)$ ergibt sich unmittelbar aus der Definition

$$(f_2 \otimes g_2) \circ (f_1 \otimes g_1) = (f_2 \circ f_1) \otimes (g_2 \circ g_1).$$

BEMERKUNG 3.3.2. (1) Durch obige Eigenschaften (1) und (2) ist das Tensorprodukt $V \otimes W$ weder eindeutig definiert, noch ist die Existenz einer solchen Basis und bilinearen Abbildung unmittelbar klar. Es handelt sich bei den Eigenschaften (1) und (2) um die wesentlichen Eigenschaften, die wir im folgenden verwenden wollen.

(2) Konstruktion des Tensorprodukts. Es gibt Isomorphismen $V \simeq K^m$ und $W \simeq K^n$, die jeweils die Basen (v_i) und (w_j) auf die Standardbasen (e_i) und (f_j) schicken. Definiere $V \otimes W$ als K^{mn} . Definiere $\tau(v_i, w_j)$ als den j + (i-1)n-ten Standardbasisvektor in K^{mn} . Sind $v = \sum_i \alpha_i v_i$ und $w = \sum_j \beta_j w_j$, so definiert man $\tau(v, w) = \sum_i \sum_j \alpha_i \beta_j \tau(v_i, w_j)$. Es ist dann offensichtlich, dass $\tau : V \times W \longrightarrow V \otimes W$ eine bilineare Abbildung ist, und dass $\tau(v_i, w_j)$ $(1 \le i \le m, 1 \le j \le n)$ eine Basis von $V \otimes W$ ist.

(3) Universelle Eigenschaft des Tensorprodukts. Ist $f: V \times W \longrightarrow X$ eine bilineare Abbildung in den K-Vektorraum X, so gibt es genau eine lineare Abbildung $\overline{f}: V \otimes W \longrightarrow X$

mit $\overline{f} \circ \tau = f$. Das Tensorprodukt erlaubt also eine Linearisierung einer bilinearen Abbildung. Durch diese universelle Eigenschaft ist das Tensorprodukt $V \otimes W$ schon eindeutig bestimmt (bis auf Isomorphie).

Beweis der universellen Eigenschaft: Sei $V \otimes W$ wie in (2) konstruiert. Sei $f : V \times W \longrightarrow X$ bilinear. Definiere die lineare Abbildung \overline{f} auf der Basis $\tau(v_i, w_j)$ durch $\overline{f}(\tau(v_i, w_j)) \stackrel{Def}{=} f(v_i, w_j)$. Dann ist unmittelbar klar, dass $\overline{f} \circ \tau = f$ gilt. Soll andererseits diese Gleichung gelten, so muss man \overline{f} wie oben definieren.

3.3.3 (Freie Moduln). Es wird im folgenden wichtig sein, vorherige Aussagen in einem allgemeineren Setting zu betrachten. Dazu wollen wir den Körper K ersetzen durch einen kommutativen Ring mit Eins. Da wir Knotenpolynome (ähnlich dem Jones-Polynom) konstruieren wollen, stelle man sich als Standardbeispiel etwa den (Laurent-) Polynomring $\mathbb{Z}[q^{-1},q]$ vor.

Völlig analog zum Begriff des Vektorraums definiert man sogenannte Moduln über K. Dies ist eine Menge V mit zwei Verknüpfungen $+ : V \times V \longrightarrow V$ und $\cdot : K \times V \longrightarrow V$, so dass (V, +) eine abelsche Gruppe ist und die "Skalarmultiplikation" folgende Eigenschaften hat:

$$\alpha(v+v') = \alpha v + \alpha v' \quad (\alpha + \alpha')v = \alpha v + \alpha v' \quad (\alpha \alpha')v = \alpha(\alpha'v) \quad 1v = v$$

für alle $\alpha, \alpha' \in K$ und $v, v' \in V$. Dies sind also exakt dieselben Axiome wie für Vektorräume. Der wesentliche Unterschied zur Theorie der Vektorräume ist, dass allgemein ein Modul über einem kommutativen Ring keine Basis mehr zu besitzen braucht. (Eine Basis ist wie über Körpern definiert, also als linear unabhängiges Erzeugendensystem.) Gibt es eine Basis in V, so heißt V ein *freier* Modul. Wir betrachten im folgenden nur endlich erzeugte freie K-Moduln.

K-lineare Abbildungen zwischen K-Moduln sind definiert wie für Vektorräume. Jeder (endlich erzeugte) freie K-Modul ist isomorph zu K^n für ein n. Es ist offensichtlich, dass alle gemachten Aussagen über Tensorprodukte genauso für freie Moduln gelten. Es ist daher keine Einschränkung – zumindest für die Theorie –, sich stets den Spezialfall von Vektorräumen über Körpern vorzustellen.

3.3.4 (Yang-Baxter-Operator). Sei $R: V \otimes V \longrightarrow V \otimes V$ ein Automorphismus (= bijektive lineare Abbildung). Für jedes $n \in \mathbb{N}$ definiert dies n-1 Automorphismen

 $R_i = 1 \otimes 1 \otimes \ldots \otimes 1 \otimes R \otimes 1 \otimes \ldots \otimes 1 : V^{\otimes n} \longrightarrow V^{\otimes n},$

wobei hier R nur auf der *i*-ten und der (i + 1)-ten Kopie von V operiert (i = 1, ..., n - 1); es gilt also

$$(3.3.1) \quad R_i(x_1 \otimes x_2 \otimes \ldots \otimes x_n) = x_1 \otimes \ldots \otimes x_{i-1} \otimes R(x_i \otimes x_{i+1}) \otimes x_{i+2} \otimes \ldots \otimes x_n.$$

Dann heißt R ein Yang-Baxter-Operator (oder eine R-Matrix, falls die Basis fest gewählt ist), falls die Yang-Baxter-Gleichung

$$(3.3.2) R_1 R_2 R_1 = R_2 R_1 R_2$$

erfüllt ist. Es folgt dann offenbar

 $(3.3.3) R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1} (i = 1, \dots, n-1).$

(Man beachte die Analogie zu den Zopf-Relationen!) Außerdem gilt auch die ferne Kommutativität

(3.3.4)
$$R_i R_j = R_j R_i \quad (|i - j| \ge 2)$$

3.3.5 (Konstruktion einer Verschlingungsinvariante, 1. Versuch). Sei R: $V \otimes V \longrightarrow V \otimes V$ ein Yang-Baxter-Operator. Wegen (3.3.3) und (3.3.4) gibt es dann einen Gruppenhomomorphismus

(3.3.5)
$$\rho: B_n \longrightarrow \operatorname{Aut}(V^{\otimes n}), \quad b_i \mapsto R_i.$$

Für jeden Endomorphismus f bezeichne Sp(f) die Spur von f. Sei L eine Verschlingung. Nach dem Satz von Alexander gibt es dann ein $b \in B_n$ mit $\beta(b) = L$. Definiere

$$(3.3.6) T(L) = \operatorname{Sp}(\rho(b)).$$

Da bekanntlich $\operatorname{Sp}(f \circ q) = \operatorname{Sp}(q \circ f)$, ist die rechte Seite invariant unter der ersten Markov-Bewegung. Um zu zeigen, dass T eine Verschlingungsinvariante definiert, muss man zeigen, dass die rechte Seite auch unter der zweiten Markov-Bewegung invariant ist. Dies ist so aber i. a. nicht richtig. Dazu muss die Definition von T noch etwas modifiziert werden.

3.3.6 (Erweiterte Yang-Baxter-Operatoren). Sei $R: V \otimes V \longrightarrow V \otimes V$ ein Yang-Baxter-Operator. Mit Hilfe der Basis v_1, \ldots, v_m von V schreibe man

(3.3.7)
$$R(v_i \otimes v_j) = \sum_{p,q} R_{i,j}^{p,q} v_p \otimes v_q$$

mit Koeffizienten $R_{i,j}^{p,q} \in K$. Sei $\mu : V \longrightarrow V, \ \mu = \text{diag}(\mu_1, \mu_2, \dots, \mu_m)$. Seien α und β Einheiten in K. Es gelte

$$(3.3.8) R \circ (\mu \otimes \mu) = (\mu \otimes \mu) \circ R$$

und

(3.3.9)
$$\sum_{j} R_{i,j}^{k,j} \mu_j = \alpha \beta \delta_{ik} \text{ und } \sum_{j} (R^{-1})_{i,j}^{k,j} \mu_j = \alpha^{-1} \beta \delta_{ik}.$$

(Kronecker-Delta.) Dann heißt R, genauer das Tupel $S = (R, \mu, \alpha, \beta)$ ein erweiterter Yang-Baxter-Operator (engl. enhanced); μ heißt Erweiterung von R (engl. enhancement).

3.3.7. Sei $S = (R, \mu, \alpha, \beta)$ ein erweiterter Yang-Baxter-Operator. Definiere eine Abbildung

$$T_S: \coprod_{n \ge 1} B_n \longrightarrow K$$

durch

(3.3.10)
$$T_S(b) = \alpha^{-w(b)} \beta^{-n} \operatorname{Sp}(\rho(b) \circ \mu^{\otimes n}),$$

wobei $b \in B_n$ ist und $w : B_n \longrightarrow \mathbb{Z}$ der Homomorphismus ist mit $w(b_i) = 1$.

LEMMA 3.3.8. Seien $a, b \in B_n$. Ist S ein erweiterter Yang-Baxter-Operator, so gilt

$$T_S(aba^{-1}) = T_S(b) = T_S(bb_n) = T_S(bb_n^{-1}).$$

BEWEIS. Aus (3.3.8) ergibt sich $\rho(c)\mu^{\otimes n} = \mu^{\otimes n}\rho(c)$ für alle $c \in B_n$, also folgt

$$\begin{aligned} \operatorname{Sp}(\rho(aba^{-1}) \circ \mu^{\otimes n}) &= \operatorname{Sp}(\rho(a) \circ \rho(b) \circ \rho(a)^{-1} \circ \mu^{\otimes n}) \\ &= \operatorname{Sp}(\rho(a) \circ \rho(b) \circ \mu^{\otimes n} \circ \rho(a)^{-1}) = \operatorname{Sp}(\rho(b) \circ \mu^{\otimes n}). \end{aligned}$$

Da außerdem offenbar $w(aba^{-1}) = w(b)$ gilt, ergibt sich die erste Gleichheit. Da offenbar $\rho(bb_n) = (\rho(b) \otimes 1_V) \circ R_n \in \operatorname{Aut}(V^{\otimes (n+1)})$, folgt

$$\begin{aligned} \operatorname{Sp}(\rho(bb_n) \circ \mu^{\otimes (n+1)}) &= & \operatorname{Sp}((\rho(b) \otimes 1_V) \circ R_n \circ (1_V^{\otimes (n-1)} \otimes \mu^{\otimes 2}) \circ (\mu^{\otimes (n-1)} \otimes 1_V^{\otimes 2})) \\ &= & \operatorname{Sp}((\rho(b) \otimes 1_V) \circ (1_V^{\otimes (n-1)} \otimes (R \circ \mu^{\otimes 2})) \circ (\mu^{\otimes (n-1)} \otimes 1_V^{\otimes 2})) \\ &\stackrel{(*)}{=} & & \operatorname{Sp}(\rho(b) \circ (1_V^{\otimes (n-1)} \otimes (\alpha \beta \mu)) \circ (\mu^{\otimes (n-1)} \otimes 1_V)) \\ &= & & \operatorname{Sp}(\alpha \beta(\rho(b) \circ \mu^{\otimes n}) = \alpha \beta \operatorname{Sp}(\rho(b) \circ \mu^{\otimes n}). \end{aligned}$$

(*) ergibt sich mit (3.3.9) aus generellen Eigenschaften der Spur; die Details findet man in untenstehender Bemerkung. Wegen $w(bb_n) = w(b) + 1$ ergibt sich die zweite Gleichheit. Die dritte folgt analog.

SATZ 3.3.9. Set S ein erweiterter Yang-Baxter-Operator. Set L eine orientierte Verschlingung und $b \in B_n$ mit $\beta(b) = L$. Definiere $T_S(L)$ durch $T_S(b)$. Dann ist T_S eine Verschlingungsinvariante.

BEWEIS. Dies folgt unmittelbar aus dem vorstehenden Lemma und dem Satz von Markov. $\hfill \Box$

BEMERKUNG 3.3.10. Hier werden die Details des Beweises der Gleichheit (*) im Beweis von Lemma 3.3.8 erörtert. Sei $f \in \text{End}(V^{\otimes n})$. Definiere die *Operator-Spur* von f als

$$\operatorname{Sp}_n(f) \in \operatorname{End}(V^{\otimes (n-1)})$$

definiert auf der Basis (v_i) durch

$$\operatorname{Sp}_{n}(f)(v_{i_{1}} \otimes \ldots \otimes v_{i_{n-1}}) = \sum_{1 \leq j_{1}, \ldots, j_{n-1}, j \leq m} f_{i_{1}, \ldots, i_{n-1}, j}^{j_{1}, \ldots, j_{n-1}, j} v_{j_{1}} \otimes \ldots \otimes v_{j_{n-1}}.$$

Die dabei auftretenden Koeffizienten sind analog zu (3.3.7) definiert.

- (1) Es ist $\text{Sp}_n(f)$ unabhängig von der gewählten Basis von V.
- (2) Es gilt $\operatorname{Sp}(\operatorname{Sp}_n(f)) = \operatorname{Sp}(f)$.
- (3) (3.3.9) bedeutet $\operatorname{Sp}_2(R \circ \mu^{\otimes 2}) = \alpha \beta \mu$ bzw. $\operatorname{Sp}_2(R^{-1} \circ \mu^{\otimes 2}) = \alpha^{-1} \beta \mu$.
- (4) Sind f, g, h Endomorphismen von $V^{\otimes (n+1)}, V^{\otimes n}$ bzw. $V^{\otimes 2}$, so gilt

$$Sp_{n+1}(f \circ (g \otimes 1_V)) = Sp_{n+1}(f) \circ g,$$

$$Sp_{n+1}((g \otimes 1_V) \circ f) = g \circ Sp_{n+1}(f),$$

$$Sp_{n+1}(1_V^{\otimes (n-1)} \otimes h) = 1_V^{\otimes (n-1)} \otimes Sp_2(h).$$

ÜBUNG 3.3.11. (1) Man zeige: Für $f \in \text{End}(V), g \in \text{End}(W)$ gilt $\text{Sp}(f \otimes g) = \text{Sp}(f) \cdot \text{Sp}(g).$

Sei $S = (R, \mu, \alpha, \beta)$ ein erweiterter Yang-Baxter-Operator. Man zeige:

(2) Sind L und L' orientierte Verschlingungen, so gilt $T_S(L \sqcup L') = T_S(L) \cdot T_S(L')$.

(3) Ist *L* die triviale Verschlingung bestehend aus *n* Komponenten, so ist $T_S(L) = (\beta^{-1} \operatorname{Sp}(\mu))^n$.

ÜBUNG 3.3.12. Man zeige: Ist $S = (R, \mu, \alpha, \beta)$ ein erweiterter Yang-Baxter-Operator, so auch $S' = (\alpha^{-1}R, \beta^{-1}\mu, 1, 1)$ und es gilt $T_S = T_{S'}$.

Für den nächsten Satz sei an den Satz von Cayley-Hamilton erinnert, der besagt, dass jeder Endomorphismus seiner charakteristischen Gleichung genügt.

SATZ 3.3.13. Set $S = (R, \mu, \alpha, \beta)$ ein erweiterter Yang-Baxter-Operator. Falls R die Gleichung $\sum_{i=p}^{q} k_i R^i = 0$ erfüllt, so gilt $\sum_{i=p}^{q} k_i \alpha^i T_S(L_i) = 0$, sofern L_p, \ldots, L_q beliebige orientierte Verschlingungen sind, die sich nur an einer Stelle unterscheiden, wo L_i eine Quaste mit i Kreuzungen hat.

BEWEIS. Es gibt einen Zopf $b \in B_n$, so dass L_p, \ldots, L_q Abschlüsse der Zöpfe $b, b_1 b, \ldots b_1^{q-p} b$ sind. Dann

$$T_S(L_i) = T_S(b_1^i b) = \alpha^{-i-w(b)} \beta^{-n} \operatorname{Sp}((R_1)^i \circ \rho(b) \circ \mu^n).$$

Es folgt

$$\sum_{i=p}^{q} k_i \alpha^i T_S(L_i) = \alpha^{-w(b)} \beta^{-n} \operatorname{Sp}\left(\sum_{i=p}^{q} k_i (R_1)^i \circ \rho(b) \circ \mu^n\right) = 0.$$

BEMERKUNG 3.3.14. Da die L_i in obigem Satz die von den Zöpfen vererbte natürliche Orientierung haben, ist mit der Notation in Abbildung 2.3 speziell $L_1 = L^-$, $L_0 = L^0$ und $L_{-1} = L^+$. Dies liegt an der Definition von L^+ (bzw. L^-) einerseits und an der Definition des Erzeugers b_1 der Zopfgruppe andererseits; bei beiden hat man zwei Möglichkeiten der Definition. In der Literatur tritt häufig die (natürlichere) Situation $L_1 = L^+$ und $L_{-1} = L^$ auf.

3.4. Das Jones-Polynom in zwei Variablen

In diesem Abschnitt wird die Existenz einer Verschlingungs
invariante ${\cal P}$ nachgewiesen, die die Relation

$$xP(L^{+}) + x^{-1}P(L^{-}) + yP(L^{0}) = 0$$

erfüllt und $P(\bigcirc) = 1$. Dies ist das Jones-Polynom in zwei Variablen, welches auch das HOMFLY-Polynom genannt wird.

Wir schauen uns dazu einen speziellen (erweiterten) Yang-Baxter-Operator an. Sei $K = \mathbb{Z}[q^{-1}, q]$ und V ein freier K-Modul mit Basis v_1, \ldots, v_m . Sei $E_{ij} \in \text{End}(V)$ mit $E_{ij}(v_k) = \delta_{ik}v_j$. Der Endomorphismus $E_{ij} \otimes E_{kl}$ schickt das Basiselement $v_i \otimes v_k$ von $V^{\otimes 2}$ auf $v_j \otimes v_l$ und jedes andere auf Null.

LEMMA 3.4.1. Mit

$$R = -q^{-1} \sum_{i} E_{ii} \otimes E_{ii} + \sum_{i \neq j} E_{ij} \otimes E_{ji} + (q - q^{-1}) \sum_{i > j} E_{ii} \otimes E_{jj}$$

erhält man einen Yang-Baxter-Operator.

ÜBUNG 3.4.2. Man beweise das Lemma für den Fall m = 2.

LEMMA 3.4.3. Das Inverse zu R ist gegeben durch

$$R^{-1} = -q \sum_{i} E_{ii} \otimes E_{ii} + \sum_{i \neq j} E_{ij} \otimes E_{ji} + (q^{-1} - q) \sum_{i < j} E_{ii} \otimes E_{jj}.$$

BEWEIS. Sei R' wie in der Aussage des Lemma definiert. Da

$$E_{ij}E_{kl} = \begin{cases} E_{il} & j = k\\ 0 & j \neq k \end{cases}$$

folgt leicht

$$R \circ R' = (-q^{-1})(-q) \sum_{i} E_{ii} \otimes E_{ii} + \sum_{i \neq j} E_{ii} \otimes E_{jj}$$
$$+ (q^{-1} - q) \sum_{i > j} E_{ij} \otimes E_{ji} + (q - q^{-1}) \sum_{i > j} E_{ij} \otimes E_{ji}$$
$$= \sum_{i,j} E_{ii} \otimes E_{jj} = 1_{V \otimes V},$$

und ebenso $R' \circ R = 1_{V \otimes V}$.

LEMMA 3.4.4. Es gilt

$$R - R^{-1} = (q - q^{-1}) \, 1_{V \otimes V}.$$

BEWEIS. Subtraktion liefert sofort

$$R - R^{-1} = (q - q^{-1}) \sum_{i} E_{ii} \otimes E_{jj} + (q - q^{-1}) \sum_{i \neq j} E_{ii} \otimes E_{jj}$$
$$= (q - q^{-1}) \sum_{i,j} E_{ii} \otimes E_{jj} = 1_{V \otimes V}.$$

LEMMA 3.4.5. Sei $\mu = \text{diag}(\mu_1, \ldots, \mu_m)$ mit $\mu_i = q^{2i-m-1}$, sei $\alpha = -q^{-m}$ und $\beta = 1$. Dann ist $S = (R, \mu, \alpha, \beta)$ ein erweiterter Yang-Baxter-Operator. BEWEIS. Nach Definition von R ergeben sich gemäß (3.3.7) folgende Koeffizienten:

(3.4.1)
$$R_{i,j}^{k,l} = \begin{cases} -q^{-1} & i = j = k = l \\ 1 & i = l \neq k = j \\ q - q^{-1} & i = k > l = j \\ 0 & \text{sonst} \end{cases}$$

Insbesondere, falls $R_{i,j}^{k,l} \neq 0$, dann stimmen die nicht-geordneten Paare $\{i, j\}$ und $\{k, l\}$ überein. Das gleiche gilt für R^{-1} . Damit ergibt sich sofort

$$(\mu_i \mu_j - \mu_k \mu_l) R_{i,j}^{k,l} = 0,$$

was zu (3.3.8) äquivalent ist. Für (3.3.9) bleibt

$$\sum_{j=1}^{m} R_{i,j}^{i,j} \mu_j = \alpha \beta$$

zu zeigen (und Analoges für R^{-1} mit $\alpha^{-1}).$ Aus (3.4.1) und der Definition von μ folgt

$$\sum_{j=1}^{m} R_{i,j}^{i,j} \mu_j = -q^{-1} \mu_i + \sum_{j=1}^{i-1} (q - q^{-1}) \mu_j$$

= $-q^{2i-m-2} + (q - q^{-1})(q^{1-m} + q^{3-m} + \dots + q^{2i-m-3})$
= $-q^{-m} = \alpha \beta.$

SATZ 3.4.6. Sei S obiger erweiterter Yang-Baxter-Operator. Die Verschlingungsinvariante T_S erfüllt folgende Relation

(3.4.2)
$$q^{m}T_{S}(L^{+}) - q^{-m}T_{S}(L^{-}) + (q^{-1} - q)T_{S}(L^{0}) = 0$$

und liefert den Wert $\frac{q^m - q^{-m}}{q - q^{-1}}$ auf dem Unknoten.

BEWEIS. Die Relation (3.4.2) ergibt sich sofort aus Satz 3.3.13 zusammen mit Lemma 3.4.4. Nach Übung 3.3.11 ist der Wert des Unknotens $Sp(\mu)$, welcher in diesem konkreten Fall den behaupteten Wert ergibt.

LEMMA 3.4.7. Sei L ein orientierte Verschlingungsdiagramm mit n Komponenten und u Kreuzungspunkten. Sei $m \ge 4u + 2n + 1$. Sei P_m obige Invariante. Dann hat das Laurent-Polynom $(q - q^{-1})^{u+n}P_m(L)$ eine eindeutige Darstellung als endliche Summe

(3.4.3)
$$\sum_{a,b\in\mathbb{Z}} r_{a,b} q^{a+mb}$$

mit $r_{a,b} \in \mathbb{Z}$, und mit $r_{a,b} = 0$ for |a| > 2u + n. Die Koeffizienten $r_{a,b}$ hängen nicht von m ab.

BEWEIS. Eine solche Darstellung folgt durch iterative Anwendung von Formel (3.4.2) ähnlich wie im Beweis von Satz 2.3.16. Wir verzichten hier auf eine detaillierte Erörterung. Natürlich sind Koeffizienten eines Laurent-Polynoms eindeutig. Für die Eindeutigkeit (bzw. Unabhängigkeit von m) genügt es daher zu zeigen, dass nicht zwei *unterschiedliche* Paare $(a, b) \neq$ (a', b') von Indizes zwei gleiche Monome $q^{a+mb} = q^{a'+mb'}$ mit Koeffizienten $\neq 0$ in obiger Darstellung (3.4.3) liefern. Aus $q^{a+mb} = q^{a'+mb'}$ folgt a + mb =a' + mb', also a - a' = m(b' - b). Sind die Koeffizienten $r_{a,b}, r_{a',b'} \neq 0$, so folgt $|a|, |a'| \leq 2u + n < m/2$, also |a - a'| < m, und es folgt b = b' und a = a'.

Bezeichne mit \mathcal{L} die Menge der Äquivalenzklassen aller *orientierten* Verschlingungen.

SATZ 3.4.8. Es gibt eine eindeutig bestimmte Verschlingungsinvariante

$$P: \mathcal{L} \longrightarrow \mathbb{Z}[x, x^{-1}, y, y^{-1}]$$

mit folgenden Eigenschaften:

(3.4.4) $xP(L^+) + x^{-1}P(L^-) + yP(L^0) = 0$

und

$$(3.4.5) P(\bigcirc) = 1$$

DEFINITION 3.4.9. Das Polynom aus dem Satz wird *Jones-Polynom in zwei Variablen* genannt. Es heißt auch, nach den Namen seiner Entdecker, das *HOMFLY-Polynom* (nach Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter). Häufig wird es auch in der Form

(3.4.6)
$$t^{N/2}P(L^{+}) - t^{-N/2}P(L^{-}) + (t^{-1/2} - t^{1/2})P(L^{0}) = 0$$

angegeben, wobei hier t und N Variable sind. Man bekommt diese Gleichung durch Substitution $(x, y) = (it^{N/2}, i(t^{-1/2} - t^{1/2}))$. Im Spezialfall N = -2 ergibt sich das Jones-Polynom (in einer Variablen).

BEWEIS DES SATZES. Die Eindeutigkeit ergibt sich durch iterative Anwendung von (3.4.4) und (3.4.5) wie im Beweis von Satz 2.3.6. Zur Existenz: Seien L, n, u wie im Lemma 3.4.7. Sei $m \ge 4u + 2n + 1$ und seien die Koeffizienten $r_{a,b}$ wie in (3.4.3). Definiere

(3.4.7)
$$N(L) = (q - q^{-1})^{-u - n} \sum_{a, b \in \mathbb{Z}} r_{a, b} q^a t^b.$$

Es folgt aus Lemma 3.4.7, dass N(L) ein Laurent-Polynom in den Variablen q und t ist, und dass nicht von der Wahl von m abhängt. Da P_m eine Verschlingungsinvariante ist, folgt dies auch für N(L). Aus (3.4.2) ergibt sich

(3.4.8)
$$tN(L^+) - t^{-1}N(L^-) + (q^{-1} - q)N(L^0) = 0.$$

Auf der trivialen Verschlingung mit n Komponenten nimmt N den Wert $(t - t^{-1})^n/(q - q^{-1})^n$ an. Es folgt (wie in 2.3.16) dass N(L) ein Laurent-Polynom in den Koeffizienten t und $q - q^{-1}$ ist. Substituiert man t = ix

und $q - q^{-1} = -iy$ $(i = \sqrt{-1})$ und normiert noch mit dem Faktor $(q - q^{-1})/(t - t^{-1}) = -y/(x + x^{-1})$, so bekommt man das Jones-Polynom P in zwei Variablen.

PROPOSITION 3.4.10. Sei L eine orientierte Verschlingung mit r Komponenten. Dann gilt für die in P(L) auftretenden Monome $x^a y^b$ (deren Koeffizienten $\neq 0$ sind) die Beziehung

$$a \equiv b \equiv r - 1 \operatorname{mod} 2.$$

BEWEIS. Dies folgt analog zum Beweis von Satz 2.3.16.

BEMERKUNG 3.4.11. Aus der Eigenschaft $T_S(L \sqcup L') = T_S(L)T_S(L')$ (vgl. Übung 3.3.11) erhält man mit (3.4.7) leicht für das HOMFLY-Polynom

$$P(L \sqcup L') = -y^{-1}(x + x^{-1})P(L)P(L').$$

Mit Abbildung 3.7 folgt

$$P(L \# L') = -y(x + x^{-1})^{-1} P(L \sqcup L') = P(L)P(L').$$

ABBILDUNG 3.7. $(L \# L')^+ = (L \# L')^-$ und $(L \# L')^0 = L \sqcup L'$

ÜBUNG 3.4.12. Sei K ein orientierter Knoten. Für das HOMFLY-Polynom P = P(x, y) zeige man:

(1) Es ist

$$P(K) = \sum_{i \ge 0} p_i(x^2) y^i$$

(endliche Summe), wobei $p_i(x^2)$ Laurent-Polynome in $x^{\pm 2}$ mit ganzzahligen Koeffizienten sind mit $p_i(x^2) = 0$ für ungerades *i*.

(2) Für das Spiegelbild K^* gilt

$$P(K^*)(x, y) = P(K)(x^{-1}, y).$$

Literaturhinweise. Die Konstruktion aus den letzten beiden Abschnitten, also der Konstruktion einer Verschlingungsinvariante mit Hilfe eines (erweiterten) Yang-Baxter-Operators und damit des Jones-Polynoms in zwei Variablen geht zurück auf Turaev [14]. (Dort findet man die Rollen von Rund R^{-1} vertauscht, was die Rollen von q und q^{-1} bzw. von α und α^{-1} vertauscht. Dies hängt mit Bemerkung 3.3.14 zusammen. Nach der Rollenvertauschung stimmen die hier beschriebenen Ergebnisse mit denen in [14]

überein.) Eine kurze Zusammenfassung findet man in Kapitel 16 von Lickorish [8], eine noch kürzere in § 32 von Prasolov und Sossinsky [11]. Es sei hier nur der Vollständigkeit halber erwähnt, dass die in [14] vorkommenden Yang-Baxter-Operatoren aus der Darstellungstheorie einfacher komplexer Lie-Algebren stammen.

Eine andere, aber sehr ähnliche (auf Ocneanu zurückgehende) Konstruktion des Jones-Polynoms in zwei Variablen mit Hilfe von Hecke-Algebren findet man bei Lück [9] und Feichtner [5].

3.5. Entwirrungsinvarianten

Hier wird gezeigt, wie man aus dem Jones-Polynom in zwei Variablen durch Variablensubstitution weitere Verschlingungsinvarianten bekommt, die durch eine Entwirrungsrelation definiert sind. Schließlich wird gezeigt, dass unter diesen das Jones-Polynom in zwei Variablen schon die stärkste Invariante ist.

Bezeichne mit \mathcal{L} die Menge der Äquivalenzklassen aller orientierten Verschlingungen.

DEFINITION 3.5.1 (Conway 1967). Sei K ein kommutativer Ring mit 1 und $I : \mathcal{L} \longrightarrow K$ eine Verschlingungsinvariante. Diese heißt *Entwirrungsin*variante (engl. skein-invariant), falls $I(\bigcirc) = 1$, und falls es Einheiten $a_+, a_-,$ $a_0 \in K$ (die *Entwirrungskoeffizienten*) gibt, so dass die *Entwirrungsrelation*

(3.5.1)
$$a_{+}I(L^{+}) + a_{-}I(L^{-}) + a_{0}I(L^{0}) = 0$$

gilt.

SATZ 3.5.2. Eine Entwirrungsinvariante ist durch ihre Entwirrungskoeffizienten a_+ , a_- , a_0 eindeutig bestimmt.

BEWEIS. Dies ergibt sich nahezu wörtlich wie im Beweis von Satz 2.3.6. (Man beachte auch Übung 2.3.3.) $\hfill \Box$

BEISPIELE 3.5.3. Es ergeben sich Beispiele für Entwirrungsinvarianten druch Spezialisierung des Jones-Polynoms P in zwei Variablen. (Alle Beispiele liefern den Wert 1 für den Unknoten.) Man beachte, dass wir mit der Existenz von P auch die Existenz all dieser Beispiele bewiesen haben.

(1) Das Jones-Polynom in zwei Variablen/HOMFLY-Polynom (1985).

$$xP(L^+) + x^{-1}P(L^-) + yP(L^0) = 0.$$

Die hier beschriebene Konstruktion von Turaev ist von 1988.

(2) Das Jones-Polynom in einer Variablen (1985). Substitution $x = iq^{-1}$ $(i = \sqrt{-1})$ und $y = i(q^{-1/2} - q^{1/2})$ liefert das Jones-Polynom in einer Variablen

$$q^{-1}V(L^+) - qV(L^-) + (q^{-1/2} - q^{1/2})V(L^0) = 0.$$

Dies ist eine Entwirrungsinvariante in den Variablen $q^{\pm 1/4}$. Durch eine weitere Substituierung $a = q^{-1/4}$ bekommt man das Kauffman-Polynom. Der beschriebene, elementare Zugang von Kauffman stammt von 1987.

(3) Das Conway-Polynom (1970). Substitution x = i, y = -iz liefert das Conway-Polynom

$$\nabla(L^+) - \nabla(L^-) - z\nabla(L^0) = 0.$$

(4) Das Alexander-Polynom (1923). Substitution $x = i, y = -i(1 - t^2)^{-1/2}$ liefert das Alexander-Polynom

$$\Delta(L^+) - \Delta(L^-) - (1 - t^2)^{-1/2} \Delta(L^0) = 0.$$

Das Alexander Polynom wurde ursprünglich ganz anders definiert. Erst Conway zeigte um 1970, dass es allein durch die angegebene Entwirrungsrelation zu berechnen ist.

UBUNG 3.5.4. (1) Man berechne das Jones-Polynom in zwei Variablen für die Kleeblatt-Knoten, den Hopf-Verschlingungen und den Achter-Knoten.

(2) Durch Substitution bestimme man das Conway-Polynom dieser Verschlingungen.

(3) Man berechne für dieselben Verschlingungen das Conway-Polynom direkt.

UBUNG 3.5.5. Sei K ein orientierter Knoten und K^* das Spiegelbild. Man zeige für das Conway-Polynom

$$\nabla(K^*) = \nabla(K).$$

SATZ 3.5.6. Sei P das Jones-Polynom in zwei Variablen. Sei K ein kommutativer Ring mit 1 und $I : \mathcal{L} \longrightarrow K$ eine Entwirrungsinvariante mit den Koeffizienten a_+ , a_- und a_0 . Für alle orientierten Verschlingungen L_1 und L_2 gilt dann:

$$P(L_1) = P(L_2) \quad \Rightarrow \quad I(L_1) = I(L_2),$$

d. h. I unterscheidet nicht mehr Verschlingungen als das Jones-Polynom P in zwei Variablen. Mit anderen Worten: Es gibt keine bessere Entwirrungsinvariante als das Jones-Polynom in zwei Variablen.

BEWEIS. Definiere

$$\overline{P}: \mathcal{L} \longrightarrow \mathbb{Z}[x^{\pm 1}, y^{\pm 1}, z^{\pm 1}]$$

durch

$$\overline{P}(L)(x,y,z) = P(x^{\frac{1}{2}}y^{-\frac{1}{2}}, x^{-\frac{1}{2}}y^{-\frac{1}{2}}z).$$

Nach 3.4.10 liefert dies ganzahlige Exponenten. Klar ist, dass \overline{P} eine Verschlingungsinvariante ist. Offenbar gilt $\overline{P}(\bigcirc) = 1$ und aus der Entwirrungsrelation (3.4.4) für P ergibt sich die für \overline{P} :

$$x^{\frac{1}{2}}y^{-\frac{1}{2}}\overline{P}(L^{+}) + x^{-\frac{1}{2}}y^{\frac{1}{2}}\overline{P}(L^{-}) + x^{-\frac{1}{2}}y^{-\frac{1}{2}}z\overline{P}(L^{0}) = 0,$$

3. KNOTEN UND ZÖPFE

woraus sich nach Multiplikation mit $x^{\frac{1}{2}}y^{\frac{1}{2}}$ die Relation

$$x\overline{P}(L^+) + y\overline{P}(L^-) + z\overline{P}(L^0) = 0$$

ergibt. Sei $\phi : \mathbb{Z}[x^{\pm 1}, y^{\pm 1}, z^{\pm 1}] \longrightarrow K$ der Ringhomomorphismus mit $\phi(x) = a_+, \phi(y) = a_-, \phi(z) = a_0$. Dies ist wohldefiniert, da (nach Voraussetzung) a_+, a_- und a_0 invertierbar sind. $\phi \circ \overline{P}$ erfüllt dann die folgende Entwirrungsrelation

$$a_+(\phi \circ \overline{P})(L^+) + a_-(\phi \circ \overline{P})(L^-) + a_0(\phi \circ \overline{P})(L^0) = 0.$$

Mit der Eindeutigkeitsaussage 3.5.2 folgt dann $\phi \circ \overline{P} = I$.

Gilt nun $P(L_1) = P(L_2)$, so folgt nach Konstruktion von \overline{P} auch $\overline{P}(L_1) = \overline{P}(L_2)$, und es ergibt sich $I(L_1) = \phi(\overline{P}(L_1)) = \phi(\overline{P}(L_2)) = I(L_2)$.

PROPOSITION 3.5.7 (Orientierungswechsel). Sei L eine orientierte Verschlingung und -L die durch Orientierungswechsel in allen Komponenten entstehende Verschlingung. Sei I eine Entwirrungsinvariante. Dann gilt

$$I(L) = I(-L).$$

BEWEIS. Es habe I die Koeffizienten a_+ , a_- , a_0 . Definiere J(L) = I(-L). Dies ist offenbar eine Verschlingungsinvariante, und sogar eine Entwirrungsinvariante mit denselben Koeffizienten von I:

$$a_{+}J(L^{+}) + a_{-}J(L^{-}) + a_{0}J(L^{0})$$

$$= a_{+}I(-(L^{+})) + a_{-}I(-(L^{-})) + a_{0}I(-(L^{0}))$$

$$= a_{+}I((-L)^{+}) + a_{-}I((-L)^{-}) + a_{0}I((-L)^{0})$$

$$= 0.$$

Aus der Eindeutigkeitsaussage 3.5.2 folgt J = I, also I(-L) = J(L) = I(L).

BEMERKUNG 3.5.8. Da es Knoten gibt, die nicht umkehrbar sind, folgt, dass P (wie alle Entwirrungsinvarianten) *keine* vollständige Invariante ist. Konkrete, nicht-äquivalente Knoten mit selbem Jones-Polynom in zwei Variablen findet man abgebildet in [**12**, S. 101] und [**11**, Fig. 3.17]. In der Tat kann man Beispiele von unendlich vielen Knoten konstruieren mit selbem HOMFLY-Polynom.

BEMERKUNG 3.5.9. Für die 12965 Knotendiagramme mit bis zu 13 Uberkreuzungen gibt es nur 5639 Alexander-Polynome [5].

KAPITEL 4

Vassiliev-Invarianten

4.1. Singuläre Knoten und Invarianten

Bei den Vassiliev-Invarianten, die auch Invarianten endlichen Typs heißen, kommt eine ganz neue Idee ins Spiel. Während wir bisher L^+ häufig durch L^- und umgekehrt ersetzt haben, wurde doch der "singuläre" Zwischenzustand, wo man es mit einem Doppelpunkt zu tun hat, gemieden. Bei den Vassiliev-Invarianten wird dies explizit ausgenutzt. Dies ist in der Mathematik nicht unüblich. Das Studium "regulärer (=nicht-singulärer)" Situationen wird erweitert auf "singuläre" Situationen. Letzteres ist zwar i. a. weitaus schwieriger, trägt aber entscheidend zum Verständnis auch der speziellen, regulären Situation bei. (Man denke etwa an den Integralsatz von Cauchy aus der Funktionentheorie, für holomorphe Funktionen, und dessen Verallgemeinerung auf holomorphe Funktionen mit Singularitäten, dem Residuensatz.)

Wir werden uns im folgenden auf Knoten (statt Verschlingungen) beschränken. Alle Knoten seien im folgenden stets orientiert. Wir werden allerdings nun eine allgemeinere Art von Knoten betrachten, nämlich solche mit endlich vielen Doppelpunkten der Form

DEFINITION 4.1.1. Ein singulärer Knoten ist eine stetige Abbildung $f : S^1 \longrightarrow \mathbb{R}^3$ (oder das Bild davon), welche injektiv ist bis auf eine endliche Anzahl von Punkten (*Doppelpunkten*), die genau zwei Urbilder haben, und wo sich Äste der Kurve transversal schneiden.

Auch hier werden wir unsere Betrachtungen wieder auf zahme Knoten, etwa polygonale Knoten, einschränken. Und, wie gesagt, alle Knoten seien orientiert.

Ambiente Isotopie bzw. kombinatorische Äquivalenz zweier singulärer Knoten wird analog wie bei herkömmlichen Knoten definiert; hier kommt hinzu, dass die Doppelpunkte erhalten bleiben und keine weiteren entstehen. Analog zu 1.4.7 kann man auch folgende Definition verwenden: Zwei singuläre Knoten K_1 und K_2 heißen äquivalent, wenn es einen orientierungserhaltenden Homöomorphismus $\phi : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ gibt mit $\phi(K_1) = K_2$, so

4. VASSILIEV-INVARIANTEN

dass der Richtungssinn von $\phi(K_1)$ und K_2 übereinstimmt und so, dass flache Umgebungen von Doppelpunkten von K_1 auf flache Umgebungen von Doppelpunkten von K_2 abgebildet werden. Hierbei ist eine *flache Umgebung eines Doppelpunktes x* des Knotens K der Durchschnitt einer (kleinen) abgeschlossenen Umgebung $A_x \subset \mathbb{R}^3$ von x mit einer (zweidimensionalen) Ebene E_x , die $A_x \cap K$ enthält; jeder singuläre Knoten lässt eine Kollektion von flachen Umgebungen seiner Doppelpunkte zu. Dies sichert, dass die Transversalität bewahrt bleibt.

Wird K_1 durch die Abbildung $f_1 : S^1 \longrightarrow \mathbb{R}^3$ parametrisiert, so wird dann K_2 durch die Abbildung $f_2 = \phi \circ f_1$ parametrisiert, es kommutiert dann also folgendes Diagramm

Dabei werden die Doppelpunkt von K_1 durch ϕ bijektiv auf die Doppelpunkte von K_2 abgebildet, wobei die Transversalität bewahrt bleibt.

Man kann sich die Doppelpunkte eines singulären Knotens zyklisch angeordnet vorstellen: Man durchläuft den Knoten seiner Orientierung gemäß und passiert dabei die Doppelpunkte, bei jedem Durchlauf des Knotens genau zweimal. Obiges ϕ bewahrt dabei die zyklische Anordnung der Doppelpunkte.

Ebenfalls analog werden Knotendiagramme für singuläre Knoten definiert. Es gibt auch eine Version des Satzes von Reidemeister für singuläre Knoten; hier sind außer den Reidemeister-Bewegungen Ω_1 , Ω_2 , Ω_3 , die nur angewendet werden außerhalb einer kleinen Umgebung eines Doppelpunktes, noch ein weiterer Typ von Bewegungen erlaubt, die den Doppelpunkt involvieren. Wir verweisen auf [10, 15.1.1].

Beispiele singulärer Knoten sieht man in Abbildung 4.1, hier ohne Orientierung dargestellt.

4.1.2. Für jedes $n \ge 0$ sei \mathcal{K}_n die Menge aller Äquivalenzklassen der Knoten mit höchstens n Doppelpunkten. Sei \mathcal{K} die Menge aller Äquivalenzklassen der Knoten mit endlich vielen Doppelpunkten. Es gilt also

$$\mathcal{K}_0 \subset \mathcal{K}_1 \subset \mathcal{K}_2 \subset \cdots \subset \bigcup_{n \ge 1} \mathcal{K}_n = \mathcal{K}.$$

Insbesondere ist \mathcal{K}_0 die Menge aller Knoten, wie wir sie bisher betrachtet haben (ohne Doppelpunkte); diese nennen wir auch nicht-singuläre Knoten.

ABBILDUNG 4.1. Singuläre Knoten

4.1.3 (Auflösung von Doppelpunkten). Sei $K \in \mathcal{K}$ und ein Doppelpunkt in K. Dieser läßt sich positiv und negativ auflösen wie in Abbildung 4.2 gezeigt.

ABBILDUNG 4.2. Positive und negative Auflösung eines Doppelpunkts

Im folgenden sei \mathbb{K} immer ein Körper der Charakteristik 0. Wir nehmen konkret $\mathbb{K} = \mathbb{R}$ an. Die meisten Resultate gelten jedoch für beliebige kommtutative Ringe \mathbb{K} .

LEMMA 4.1.4. Zu jeder Knoteninvarianten $v : \mathcal{K}_0 \longrightarrow \mathbb{K}$ gibt es eine eindeutige Fortsetzung $\hat{v} : \mathcal{K} \longrightarrow \mathbb{K}$ (d. h. mit $\hat{v}_{|\mathcal{K}_0} = v$) mit

(4.1.1)
$$\widehat{v}(\bigotimes) = \widehat{v}(\bigotimes) - \widehat{v}(\bigotimes)$$

("Vassiliev-Entwirrungsrelation"; natürlich ist das keine Entwirrungsrelation im bisher definierten Sinn.)

DEFINITION 4.1.5. $\hat{v} : \mathcal{K} \longrightarrow \mathbb{K}$ heißt die Verlängerung von $v : \mathcal{K}_0 \longrightarrow \mathbb{K}$.

BEWEIS DES LEMMAS. Sei $K \in \mathcal{K}$. Hat K nur einen Doppelpunkt, d. h. $K = K^{\times} \in \mathcal{K}_1$, so definiere $v_1(K^{\times}) \stackrel{def}{=} v(K^+) - v(K^-)$, wobei K^+ bzw. $K^- \in \mathcal{K}_0$ der Knoten mit der positiven bzw. negativen Auflösung des Doppelpunktes ist. Offenbar definiert dies eine Fortsetzung v_1 von v auf \mathcal{K}_1 mit den gewünschten Eigenschaften. Die Eindeutigkeit ist unmittelbar klar. (Dass dies überhaupt eine Invariante definiert, folgt aus der Tatsache, dass es zu äquivalenten Knoten mit einem gemeinsamen Segment immer eine Isotopie gibt, die eine Umgebung dieses Segments festhält – hier angewendet auf eine Umgebung des Doppelpunktes; wir verweisen auf [**3**]. Ist K_1 äquivalent zu K, so folgt, dass K_1^+ äquivalent ist zu K^+ und K_1^- zu K^- , daher folgt $v_1(K) = v_1(K_1)$ aus der Invarianz von v.)

Sei $n \geq 1$. Wir nehmen per Induktion an, dass bereits eine eindeutige Fortsetzung v_n auf \mathcal{K}_n existiert, die die Vassiliev-Entwirrungsrelation erfüllt.

Sei K ein Knoten mit n + 1 Doppelpunkten. Sei \bigvee ein Doppelpunkt x in K. Dann definiere $v_{n+1}(K)$ durch

(4.1.2)
$$v_{n+1}(K^{\times}) = v_n(K^+) - v_n(K^-).$$

Dies ist unabhängig von dem gewählten Doppelpunkt: Sei etwa y ein anderer Doppelpunkt und v'_{n+1} analog zu v_{n+1} , aber mit Hilfe von y statt von x definiert. Seien K_x^+ , K_x^- bzw. K_y^+ , K_y^- die positiven bzw. negativen Auflösungen des Doppelpunkts x bzw. y. Dies sind Elemente in \mathcal{K}_n , wo v_n schon definiert ist. Dann folgt, nach Definition von v_{n+1} und v'_{n+1} ,

$$\begin{aligned} v_{n+1}(K) &\stackrel{def}{=} v_n(K_x^+) - v_n(K_x^-) \\ &= (v_n((K_x^+)_y^+) - v_n((K_x^+)_y^-)) - (v_n((K_x^-)_y^+) - v_n((K_x^-)_y^-))) \\ &= (v_n((K_y^+)_x^+) - v_n((K_y^-)_x^+)) - (v_n((K_y^+)_x^-) - v_n((K_y^-)_x^-))) \\ &= (v_n((K_y^+)_x^+) - v_n((K_y^+)_x^-) - (v_n((K_y^-)_x^+)) - v_n((K_y^-)_x^-))) \\ &= v_n(K_y^+) - v_n(K_y^-) \stackrel{def}{=} v'_{n+1}(K) \end{aligned}$$

Es ergibt sich also eine eindeutige Fortsetzung v_{n+1} von v_n auf \mathcal{K}_{n+1} , die die Vassiliev-Entwirrungsrelation erfüllt.

Ist nun $K \in \mathcal{K}$, etwa $K \in \mathcal{K}_n$, so definiere $\widehat{v}(K) = v_n(K)$.

DEFINITION 4.1.6. Eine Abbildung $v : \mathcal{K} \longrightarrow \mathbb{K}$ mit

(4.1.3)
$$v(\bigotimes) = v(\bigotimes) - v(\bigotimes)$$

heißt eine singuläre Knoteninvariante.

Klar ist: Jede singuläre Knoteninvariante $v : \mathcal{K} \longrightarrow \mathbb{K}$ liefert durch Einschränkung auf \mathcal{K}_0 eine Knoteninvariante $v_0 : \mathcal{K}_0 \longrightarrow \mathbb{K}$. Wegen der Eindeutigkeitsaussage in Lemma 4.1.4 gilt außerdem $\hat{v}_0 = v$. PROPOSITION 4.1.7. Die Abbildung $v \mapsto \hat{v}$ und $w \mapsto w_0$ sind zueinander inverse bijektive Abbildungen zwischen der Menge aller nicht-singulären Knoteninvarianten $v : \mathcal{K}_0 \longrightarrow \mathbb{K}$ und der Menge aller singulären Knoteninvarianten $w : \mathcal{K} \longrightarrow \mathbb{K}$. Beide Mengen bilden jeweils in natürlicher Weise einen \mathbb{K} -Vektorraum, so dass diese Abbildungen Isomorphismen sind.

BEWEIS. Für $\alpha \in \mathbb{K}$ und $v_1, v_2 : \mathcal{K}_0 \longrightarrow \mathbb{K}$ definiert man $(\alpha \cdot v_1)(K) = \alpha \cdot (v_1(K))$ und $(v_1 + v_2)(K) = v_1(K) + v_2(K)$ für jedes $K \in \mathcal{K}_0$. Analoges für \mathcal{K} ; hier beachte man, dass dies mit den Relationen (4.1.3) verträglich ist. Der Rest folgt dann mit Lemma 4.1.4.

DEFINITION 4.1.8. Eine (nicht-singuläre) Knoteninvariante $v : \mathcal{K}_0 \longrightarrow \mathbb{K}$ heißt eine Vassiliev-Invariante (der Ordnung $\leq n$), falls die Verlängerung \hat{v} für singuläre Knoten K mit mehr als n Doppelpunkten den Wert $\hat{v}(K) = 0$ liefert:

$$K \in \mathcal{K} \setminus \mathcal{K}_n \Rightarrow \widehat{v}(K) = 0.$$

Vassiliev-Invarianten heißen auch Invarianten endlichen Typs.

Vassiliev-Invarianten wurden um 1990 unabhängig voneinander von V. Vassiliev und M. Gusarov entwickelt. Die ursprüngliche Definition von Vassiliev sieht ganz anders aus. Die hier vorgestellte Axiomatik geht auf J. Birman und X. Lin zurück. Die Definition von Gusarov ist etwas weiter unten zu finden. Der Name "Vassiliev-Invariante" geht anscheinend auf V. I. Arnold zurück.

Bezeichne mit \mathcal{V}_n die Menge aller Vassiliev-Invarianten der Ordnung $\leq n$. Sei \mathcal{V} die Menge aller Vassiliev-Invarianten (mit irgendeiner endlichen Ordnung). Dies sind offenbar Unterräume von der Menge aller nicht-singulären Knoteninvarianten, und es gilt

$$\mathcal{V}_0 \subset \mathcal{V}_1 \subset \mathcal{V}_2 \subset \cdots \subset \mathcal{V}_n \subset \mathcal{V}_{n+1} \subset \cdots \subset igcup_{i \ge 0} \mathcal{V}_i = \mathcal{V}.$$

VERMUTUNG 4.1.9 (Vassiliev). Die Gesamtheit aller Vassiliev-Invarianten liefert eine vollständige Knoteninvariante: Sind K_1 und K_2 nicht-äquivalente (orientierte, nicht-singuläre) Knoten, so gibt es ein $n \in \mathbb{N}$ und ein $v \in \mathcal{V}_n$ mit $v(K_1) \neq v(K_2)$.

Diese Vermutung ist bisher weder bewiesen noch widerlegt. Auch die folgende Frage ist bisher unbeantwortet:

PROBLEM 4.1.10. Unterscheiden die Vassiliev-Invarianten die Orientierungen der Knoten? D. h. wenn K ein orientierter Knoten ist mit $K \neq -K$, gibt es dann ein $v \in \mathcal{V}$ mit $v(K) \neq v(-K)$? Oder schwächer: Gibt es wenigstens einen solchen Knoten?

Die zuvor behandelten Entwirrungsinvarianten können diese Unterscheidung nicht leisten, siehe 3.5.7. Der erste nicht-umkehrbare Knoten wurde erst 1964 entdeckt. Ein solcher hat mindestens 8 Kreuzungspunkte.

UBUNG 4.1.11. Man zeige: Verschwindet v auf allen Knoten mit n + 1Doppelpunkten, so auf allen Knoten mit m Doppelpunkten für alle m > n. LEMMA 4.1.12. Der Wert der Verlängerung einer Vassiliev-Invarianten v der Ordnung $\leq n$ von einem Knoten mit genau n Doppelpunkten ändert sich nicht durch Kreuzungswechsel des Knotens.

BEWEIS. Sei $v \in \mathcal{V}_n$ und K ein Knoten mit genau n Doppelpunkten. Schauen wir uns K lokal an einer, etwa positiven, Überkreuzung an, also $K = K^+$. Wegen $\hat{v}(K^{\times}) = \hat{v}(K^+) - \hat{v}(K^-)$ unterscheiden sich $\hat{v}(K)$ und $\hat{v}(K^-)$ nur um den Wert $v(K^{\times})$. Da K^{\times} aber n + 1 Doppelpunkte hat, ist $\hat{v}(K^{\times}) = 0$.

4.1.13 (Invarianten der Ordnung 0 und 1). Es gilt $\mathcal{V}_0 = \mathbb{K}$. Sei v eine Vassiliev-Invariante der Ordnung 0. Sind K und K' zwei (nicht-singuläre) Knoten, so gilt v(K) = v(K'): Denn Satz 1.6.4 zeigt, dass K und K' durch eine endliche Anzahl von Kreuzungswechseln bis auf Isotopie ineinander überführt werden können. Aus Lemma 4.1.12 folgt v(K) = v(K'). Also ist veine konstante Funktion. Andererseits ist jede konstante Funktion offenbar eine Knoteninvariante.

Es gilt $\mathcal{V}_1 = \mathcal{V}_0 = \mathbb{K}$. Sei $v \in \mathcal{V}_1$. Sei K ein Knoten mit genau einem Doppelpunkt. Nach einer endlichen Anzahl von Kreuzungswechseln bekommt man einen Knoten $K_1 = K_1^{\times}$, der isotop ist zu folgendem:

Nach Lemma 4.1.12 ist $\hat{v}(K) = \hat{v}(K_1)$. Es ist aber offenbar $\hat{v}(K_1^{\times}) = v(K_1^+) - v(K_1^-) = v(\bigcirc) - v(\bigcirc) = 0$. Es folgt $v \in \mathcal{V}_0$.

4.1.14 (Symbole). Sei $v \in \mathcal{V}_n$. Definiere das Symbol $\sigma(v) = \sigma_n(v)$ als die Einschränkung von \hat{v} auf die Menge aller singulären Knoten mit genau n Doppelpunkten, also auf $\mathcal{K}_n \setminus \mathcal{K}_{n-1}$.

LEMMA 4.1.15. Seien $v_1, v_2 \in \mathcal{V}_n$ mit gleichem Symbol, $\sigma(v_1) = \sigma(v_2)$. Dann ist $v_1 - v_2 \in \mathcal{V}_{n-1}$.

BEWEIS. Wegen $\sigma(v_1) = \sigma(v_2)$ verschwindet $\hat{v}_1 - \hat{v}_2$ trivialerweise auf Knoten mit genau *n* Doppelpunkten. Nach Übung 4.1.11 ist $v_1 - v_2 \in \mathcal{V}_{n-1}$.

Die folgende Charakterisierung von Vassiliev-Invarianten hat M. Gusarov ursprünglich als Definition gewählt.

PROPOSITION 4.1.16. Eine Knoteninvariante $v : \mathcal{K}_0 \longrightarrow \mathbb{K}$ ist eine Vassiliev-Invariante der Ordnung $\leq n$ genau dann, wenn für alle Knoten K mit mindestens n + 1 Kreuzungspunkten

(4.1.4)
$$\sum_{\varepsilon} (-1)^{|\varepsilon|} \widehat{v}(K_{\varepsilon_1,\dots,\varepsilon_{n+1}}) = 0$$

gilt, wobei $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_{n+1})$ alle ±1 Folgen der Länge n + 1 durchläuft, $|\varepsilon|$ die Anzahl der -1-en bedeutet und $K_{\varepsilon_1,\ldots,\varepsilon_{n+1}}$ den Knoten bezeichnet, in dem man den n + 1 fest gewählten Kreuzungspunkten jeweils das Vorzeichen ε_i gibt.

BEWEIS. (1) Sei v eine Vassiliev-Invariante der Ordnung $\leq n$. Sei K ein Knoten mit mindestens n+1 Überkreuzungen. Sei \overline{K} der zugehörige singuläre Knoten, wo n+1 Überkreuzungen durch Doppelpunkte ersetzt werden. Dann ist $\hat{v}(\overline{K}) = 0$. Induktive Anwendung von (4.1.3) liefert (4.1.4).

(2) Sei umgekehrt v eine Knoteninvariante, die (4.1.4) erfüllt. Sei K ein Knoten mit mindestens n+1 Doppelpunkten. Dann sind $K_{\varepsilon_1,\ldots,\varepsilon_{n+1}}$ die 2^{n+1} möglichen Auflösungen der n+1 Doppelpunkte. Es ist dann $\hat{v}(K)$ die Summe in (4.1.4), also folgt $\hat{v}(K) = 0$, d. h. v ist eine Vassiliev-Invariante der Ordnung $\leq n$.

Wir heben die im Beweis benutzte Formel zu Berechnung von Vassiliev-Invarianten noch einmal hervor.

PROPOSITION 4.1.17. Sei v eine nicht-singuläre Knoteninvariante und \hat{v} dessen Verlängerung. Sei K ein Knoten mit genau n-Doppelpunkten. Dann gilt

(4.1.5)
$$\widehat{v}(K) = \sum_{\varepsilon} (-1)^{|\varepsilon|} v(K_{\varepsilon_1,\dots,\varepsilon_n}).$$

Zum Ende dieses Abschnitts stellen wir noch zwei grundlegende Eigenschaften von Vassiliev-Invarianten vor, die in späteren Abschnitten noch eine wichtige Rolle spielen.

4.1.18 (1-Term Relationen). Sei v eine singuläre Knoteninvariante (etwa Verlängerung einer Vassiliev-Invariante). Dann gilt

$$v(\bigcirc) = 0.$$

BEWEIS. Wegen (4.1.3) gilt

$$\pm v(\bigcirc) = v(\bigcirc) - v(\bigcirc) = 0,$$

wobei das Vorzeichen von der Orientierung abhängt.

ÜBUNG 4.1.19 (Verallgemeinerte 1-Term Relationen). Sei v eine singuläre Knoteninvariante (etwa Verlängerung einer Vassiliev-Invariante). Dann gilt

4.1.20 (4-Term Relationen). Sei v eine singuläre Knoteninvariante (etwa Verlängerung einer Vassiliev-Invariante). Dann gilt

$$v(\bigcirc) - v(\bigcirc) + v(\bigcirc) - v(\bigcirc)$$

BEWEIS. Mit (4.1.3) folgt

$$v(\bigcirc) = v(\bigcirc) - v(\bigcirc) = a - b,$$
$$v(\bigcirc) = v(\bigcirc) - v(\bigcirc) = c - d,$$
$$v(\bigcirc) = v(\bigcirc) - v(\bigcirc) = c - a,$$
$$v(\bigcirc) = v(\bigcirc) - v(\bigcirc) = d - b.$$

Aus (a - b) - (c - d) + (c - a) - (d - b) = 0 folgt die Behauptung.

4.2. Polynominvarianten liefern Vassiliev-Invarianten

Wir zeigen nun, dass die Polynominvarianten, die wir bisher kennengelernt haben, *in einem gewissen Sinne* Vassiliev-Invarianten sind, genauer gesagt, liefern. Besonders einfach ist der Nachweis für das Conway-Polynom ∇ , welches durch $\nabla(\bigcirc) = 1$ und durch die Entwirrungsrelation

$$\nabla(L^+) - \nabla(L^-) = z \cdot \nabla(L^0)$$

definiert werden kann. Es ist leicht zu sehen, dass für einen (orientierten) Knoten K das Conway-Polynom $\nabla(K)$ ein Polynom in $\mathbb{Z}[z]$ ist, d. h.

$$\nabla(K) = \sum_{n \ge 0} c_n z^n,$$

wobei $c_n \in \mathbb{Z}$ und $c_n = 0$ für fast alle *n* gilt (vgl. Übung 3.4.12).

SATZ 4.2.1 (Bar-Natan). Der n-te Koeffizient c_n im Conway-Polynom ist eine Vassiliev-Invariante der Ordnung $\leq n$.

BEWEIS. Da das Conway-Polynom ∇ eine Knoteninvariante ist, gilt dies insbesondere für dessen *n*-ten Koeffizienten c_n . Sei $K \in \mathcal{K}$. Dann ist $\widehat{\nabla}(K) \in \mathbb{Z}[z]$, und es gilt

$$\widehat{\nabla}(K^{\times}) = \widehat{\nabla}(K^{+}) - \widehat{\nabla}(K^{-}) \stackrel{*}{=} z \cdot \widehat{\nabla}(K^{0}),$$

wobei * leicht per Induktion nach der Anzahl der Doppelpunkte folgt (vgl. Übung unten). (Formal werden hier jetzt singuläre Invarianten in den kommutativen Ring $\mathbb{Z}[z]$ betrachtet, was unproblematisch ist. Man kann dies aber auch umgehen, wenn man für jedes feste n die Koeffizienten $c_n \in \mathbb{Z} \subset \mathbb{K}$ und deren Verlängerungen $\widehat{c_n}$ betrachtet.) Es folgt: Hat K mindestens n+1Doppelpunkte, so ist

(4.2.1)
$$\widehat{\nabla}(K) = z^{n+1} \cdot \widehat{\nabla}(K'),$$

wobei K' nun n + 1 Doppelpunkte weniger hat, und bei diesem Polynom ist der (0-te, 1-te, ..., (n - 1)-te und der) n-te Koeffizient null.

ÜBUNG 4.2.2. Man zeige $\widehat{\nabla}(K^{\times}) = z \cdot \widehat{\nabla}(K^0)$ für jedes $K \in \mathcal{K}$.

ÜBUNG 4.2.3. Man zeige, dass das Conway-Polynom $\nabla : \mathcal{K}_0 \longrightarrow \mathbb{Z}[z]$ selbst keine Vassiliev-Invariante ist.

SATZ 4.2.4 (Birman-Lin). Substituiert man im HOMFLY-Polynom $P_N(K)(t)$, gegeben durch die Entwirrungsrelation (3.4.6)

$$t^{N/2}P_N(L^+) - t^{-N/2}P_N(L^-) = (t^{1/2} - t^{-1/2})P_N(L^0),$$

 $t = e^x$, so ist der i-te Koeffizient $p_{N,i}(K)$ in der Taylor-Entwicklung

$$P_N(K)(e^x) = \sum_{i=0}^{\infty} p_{N,i}(K)x^i$$

eine Vassiliev-Invariante der Ordnung $\leq i$.

BEWEIS. (Bar-Natan) Nach der Substitution $t = e^x$ kann die Entwirrungsrelation (3.4.6) umgeschrieben werden zu $P_N(L^+)(e^x) - P_N(L^-)(e^x) = x \cdot S(x)$ für eine Potenzreihe S(x). (Man fügt auf der linken Seite einen Summanden $-e^{xN/2}P(K^-)(e^x)$ ein, den man gleich wieder abzieht, lässt dann $e^{xN/2}P(K^+)(e^x) - e^{xN/2}P(K^-)(e^x)$ auf der linken Seite und bringt den Rest auf die rechte Seite, teilt beide Seiten durch $e^{xN/2}$, und stellt fest, dass sich die absoluten Glieder auf der rechten Seite wegheben, so dass man x aus der Potenzreihe ziehen kann.) Dabei ist die genaue Form von S(x) unerheblich. Dann geht die Argumentation wie vorher beim Conway-Polynom.

FOLGERUNG 4.2.5. Die Vassiliev-Invarianten sind mindestens so gut wie alle Entwirrungsinvarianten.

BEWEIS. Nach Satz 3.5.6 genügt es zu zeigen, dass die Vassiliev-Invarianten mindestens so gut sind wie das HOMFLY-Polynom. Gelte also v(K) = v(K') für alle $v \in \mathcal{V}$. Dann folgt aus dem vorherigen Satz, dass die HOMFLY-Polynome für K und K' gleich sind.

4.3. Numerische Invarianten, die keine Vassiliev-Invarianten sind

Exemplarisch behandeln wir die Entknotungszahl.

SATZ 4.3.1 (Birman-Lin). Die Entknotungszahl u(K) ist keine Vassiliev-Invariante.

BEWEIS. Sei m = 4r mit $r \in \mathbb{N}$. Sei K der Knoten aus Abbildung 4.3 mit m Doppelpunkten. Dieser hat 2^m Auflösungen K_{ε} , und es berechnet sich

ABBILDUNG 4.3. Ein Knoten mit m = 4r Doppelpunkten

die Verlängerung $\widehat{u}(K)$ durch

66

$$\widehat{u}(K) = \sum_{\varepsilon} (-1)^{|\varepsilon|} u(K_{\varepsilon_1, \dots, \varepsilon_m})$$

(vgl. Formel (4.1.5)). Offenbar ist K_{ε} der Unknoten genau dann, wenn in $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_m)$ genauso oft 1 wie -1 vorkommt. Dann ist $u(K_{\varepsilon}) = 0$. Andernfalls ist offenbar $u(K_{\varepsilon}) = 1$. Es ist also zu zählen, in wieviel Tupeln ε genau *j*-mal die -1 (und folglich (m-j)-mal die 1) vorkommt für $j \neq m-j$, also $j \neq m/2$. Da die Anzahl und das Vorzeichen *j* und m-j gleich sind, ergibt sich also

$$\widehat{u}(K) = 2\left(1 - \binom{4r}{1} + \binom{4r}{2} - \binom{4r}{3} + \dots - \binom{4r}{2r-1}\right).$$

Da die Binomialkoeffizienten wachsen und eine gerade Anzahl von Summanden vorliegt, folgt $\hat{u}(K) < 0$. Dies gilt für jede natürliche Zahl r.

Sei nun $n \in \mathbb{N}$ beliebig. Wähle r mit m = 4r > n. Dann liefert die Verlängerung von u auf obigen Knoten K mit mehr als n-Doppelpunkten einen Wert $\neq 0$, also ist u nicht von der Ordnung $\leq n$.
4.4. SEHNENDIAGRAMME

4.4. Sehnendiagramme

Wir wollen die Struktur der Vektorräume \mathcal{V}_n genauer untersuchen. Mit den sogenannten Sehnendiagrammen bekommt man hierfür ein kombinatorisches Hilfsmittel.

4.4.1 (Sehnendiagramme). Sei K ein singulärer Knoten mit genau n Doppelpunkten. In Lemma 4.1.12 hat man gesehen, dass der Wert $\hat{v}(K)$ für eine Vassiliev-Invariante v der Ordnung $\leq n$ nicht von den "Verknotungen" abhängt, sondern nur von der Folge der Doppelpunkte. Diese werden durch Sehnendiagramme beschrieben.

Ein (orientierter) Knoten wird durch die (orientierte) Einheitskreislinie S^1 parametrisiert. Ein Sehnendiagramm (auch Gauß-Diagramm; engl. chord diagram) zu K ist ein kreisförmiges Diagramm, in dem man beim Durchlaufen von S^1 die 2n Punkte auf dem Kreis markiert, die auf die n Doppelpunkte abgebildet werden. Je zwei solcher Punkte werden mit einer Linie ("Sehne") verbunden, wenn sie auf denselben Doppelpunkt abgebildet werden. Ein solches Sehnendiagramm ist von der Ordnung n. Die genaue geometrische Form der Verbindungslinien spielt dabei keine Rolle. Es geht nur darum, die Verbundenheit zweier Punkte anzuzeigen. Zwei Sehnendiagramme, die ineinander durch einen orientierungsbewahrenden Diffeomorphismus des S^1 übergehen, werden nicht unterschieden.

Ein Sehnendiagramm (der Ordnung n) lässt sich natürlich auch abstrakt ohne Anwesenheit von Knoten definieren.

Das Schnendiagramm eines Knotens wird auch mit $\gamma(K)$ bezeichnet.

ABBILDUNG 4.4. Ein singulärer Knoten und sein Sehnendiagramm

ÜBUNG 4.4.2. Man gebe zu jedem der fünf Schnendiagramme der Ordnung 3 einen singulären Knoten an.

ABBILDUNG 4.5. Sehnendiagramme der Ordnung 3

4.4.3 (Der Vektorraum der Sehnendiagramme). Sei \mathcal{C}_n der Vektorraum über dem Körper K, dessen Basis die Sehnendiagramme der Ordnung n sind. Die Elemente sind also formale Linearkombinationen der Sehnendiagramme der Ordnung n. Es liefert γ eine surjektive Abbildung $\gamma : \mathcal{K}_n \longrightarrow \mathcal{C}_n$. (Bemerkung: Ist K nur ein kommutativer Ring, so kann man den freien Modul erzeugt von den Sehnendiagrammen der Ordnung n betrachten.)

4.4.4 (1-Term und 4-Term Relationen für Schnendiagramme). Die verallgemeinerten 1-Term und die 4-Term Relationen für Vassiliev-Invarianten (4.1.18 und 4.1.20) lassen sich auf Schnendiagramme übertragen, wie in Abbildung 4.6 gezeigt. Es handelt sich dabei um Elemente in dem Vektorraum C_n (für ein n). Genauer gesagt bestehen die Relationen darin, dass diese Elemente = 0 gesetzt werden. Hierbei befinden sich bei den (verallgemeinerten)

ABBILDUNG 4.6. 1-Term und 4-Term Relation für Schnendiagramme

1-Term Relationen n-1 weitere Sehnen in dem Diagramm, die die angezeigte Sehne nicht schneiden.

Bei den 4-Term Relationen befinden sich in jedem Diagramm n-2 weitere Sehnen, die in allen vier Diagrammen gleich sind, und deren Endpunkte auf dem Kreis S^1 nicht in dem rot markierten ("verbotenen") Bereich liegen. Ansonsten sind diese weiteren Sehnen beliebig. Es handelt sich also um eine Vielzahl von Elementen bzw. Relationen.

Beweis dafür, dass durch die Diagramme in Abbildung 4.6 die 4-Term Relation 4.1.20 für singuläre Knoteninvarianten widergespiegelt wird: Dies wird sofort klar, wenn man die zwei prinzipiell möglichen Verläufe des Knotens in 4.1.20 ergänzt (durch gestrichelte Linien):

4.4.5. Sei $C_n^{(1,4)}$ der Unterraum von C_n , der von *allen* Elementen aus Abbildung 4.6 erzeugt wird. Entsprechend bezeichnet $C_n^{(4)}$ den Unterraum von C_n , der von den Elementen aus Abbildung 4.6 erzeugt wird, die zu den 4-Term Relationen gehören.

ÜBUNG 4.4.6. Man zeige dim $(\mathcal{C}_3/\mathcal{C}_3^{(1)}) = 2$ und gebe eine Basis an.

ÜBUNG 4.4.7. Man liste alle 18 Schnendiagramme der Ordnung 4 auf. Man bestimme eine Basis von $\mathcal{C}_4/\mathcal{C}_4^{(1)}$.

Literaturhinweis: Formeln für die Anzahl von Sehnendiagrammen findet man in der im Internet zugänglichen Dissertation von A. Stoimenow [13]. So ergibt sich etwa dim $C_4 = 18$, dim $C_4^{(1)} = 11$, sowie dim $C_{10} = 32.743.182$ und dim $C_{10}^{(1)} = 21.695.178$.

4.5. Der Satz von Kontsevich

4.5.1 (Der Vektorraum der Vassiliev-Invarianten der Ordnung genau n). Eine Vassiliev-Invariante v heißt von der Ordnung (genau) n, falls $v \in \mathcal{V}_n \setminus \mathcal{V}_{n-1}$. Die Komplementmenge $\mathcal{V}_n \setminus \mathcal{V}_{n-1}$ ist keine Vektorraum mehr. Stattdessen betrachtet man den Faktorraum $\mathcal{V}_n/\mathcal{V}_{n-1}$. Es ist dim $(\mathcal{V}_n/\mathcal{V}_{n-1}) = \dim(\mathcal{V}_n) - \dim(\mathcal{V}_{n-1})$.

SATZ 4.5.2. Sei v eine Vassiliev-Invariante der Ordnung $\leq n$. Sei K ein Knoten mit genau n Doppelpunkten. Dann hängt der Wert $\hat{v}(K)$ nur vom Sehnendiagramm und nicht vom Knoten selbst ab. Formal:

$$\forall K_1, K_2 \in \mathcal{K}_n \setminus \mathcal{K}_{n-1}, \ \gamma(K_1) = \gamma(K_2) \quad \Rightarrow \quad \widehat{v}(K_1) = \widehat{v}(K_2).$$

Ausführlicher ausgedrückt: Die Einschränkung der Verlängerung einer Vassiliev-Invarianten auf $\mathcal{K}_n \setminus \mathcal{K}_{n-1}$ faktorisiert durch die Abbildung γ auf folgende Art

Die Zuordnung $v \mapsto w$ liefert eine lineare Abbildung

$$\alpha_n: \mathcal{V}_n \longrightarrow \mathcal{C}_n^*$$

mit Kern \mathcal{V}_{n-1} , wobei \mathcal{C}_n^* den Dualraum, also den Raum der linearen Funktionen von \mathcal{C}_n nach \mathbb{K} bezeichnet.

BEWEIS. Im Grunde ist dies eine Umformulierung von Lemma 4.1.12. Haben K_1 und K_2 genau *n* Doppelpunkte und gleiche Schnendiagramme, so liefert 4.1.12 nach einer endlichen Folge von Kreuzungswechseln äquivalente Knoten, ohne dass sich der Wert $\hat{v}(K_1)$ bzw. $\hat{v}(K_2)$ ändert. Es folgt also $\hat{v}(K_1) = \hat{v}(K_2)$.

Es ist $\sigma(v)$ die Einschränkung von \hat{v} auf $\mathcal{K}_n \setminus \mathcal{K}_{n-1}$. Jedes Schnendiagramm in \mathcal{C}_n ist von der Form $\gamma(K)$ für ein $K \in \mathcal{K}_n \setminus \mathcal{K}_{n-1}$. Das gerade gelieferte Argument zeigt, dass wir durch

$$w(\gamma(K)) \stackrel{def}{=} \widehat{v}(K) = \sigma(v)(K)$$

und lineare Fortsetzung eine wohldefinierte lineare Abbildung $w : \mathcal{C}_n \longrightarrow \mathbb{K}$ erhalten. Offenbar liefert diese und nur diese Definition obiges kommutative Dreieck.

Die Linearität der so definierten Abbildung α_n ergibt sich leicht. Aus Lemma 4.1.15 folgt die Aussage über den Kern:

$$v \in \mathcal{V}_{n-1} \quad \stackrel{4.1.15}{\Leftrightarrow} \quad \sigma_n(v) = 0$$

$$\Leftrightarrow \quad w(\gamma(K)) = \sigma_n(v)(K) = 0 \quad \forall \ K \in \mathcal{K}_n \setminus \mathcal{K}_{n-1}$$

$$\Leftrightarrow \quad w = 0 \ (= \alpha_n(v)).$$

Die Abbildung α_n kann nicht surjektiv sein, da Abbildungen auf Sehnendiagrammen, die von Vassiliev-Invarianten herkommen, die 1-Term und 4-Term Relationen erfüllen:

ZUSATZ 4.5.3. Sei $w = \alpha_n(v)$ wie im vorherigen Satz definiert. Sei π : $\mathcal{C}_n \longrightarrow \mathcal{C}_n/\mathcal{C}_n^{(1,4)}$ die kanonische Surjektion. Dann gibt es eine eindeutige lineare Abbildung $\overline{w} : \mathcal{C}_n/\mathcal{C}_n^{(1,4)} \longrightarrow \mathbb{K}$ mit $\overline{w} \circ \pi = w$. Man erhält eine lineare Abbildung $\mathcal{V}_n \longrightarrow (\mathcal{C}_n/\mathcal{C}_n^{(1,4)})^*$ mit Kern \mathcal{V}_{n-1} . BEWEIS. Sei $v \in \mathcal{V}_n$ und $w = \alpha_n(v)$. Seien K_i alle Knoten mit genau nDoppelpunkten der Form wie in 4.1.19, so dass $\hat{v}(K_i) = 0$ gilt (verallgemeinerte 1-Term Relationen), und seien K_a , K_b , K_c und K_d die Knoten mit nDoppelpunkten wie in 4.1.20, so dass $\hat{v}(K_a) - \hat{v}(K_b) + \hat{v}(K_c) - \hat{v}(K_d) = 0$ gilt (4-Term Relationen). Bezeichne mit e_i und e_a , e_b , e_c , e_d die zugehörigen Sehnendiagramme, also die Bilder dieser Knoten unter γ . Nach Definition erzeugen die e_i und $e_a - e_b + e_c - e_d$ den Unterraum $\mathcal{C}_n^{(1,4)}$. Es gilt

$$w(e_*) = w(\gamma(K_*)) = \widehat{v}(K_*)$$

(wobei hier * für alle möglichen, Indizes steht), und es folgt $w(e_i) = 0$ und $w(e_a - e_b + e_c - e_d) = 0$. Also verschwindet w auf dem Unterraum $C_n^{(1,4)}$. Nach dem Homomorphiesatz induziert w daher eine lineare Abbildung \overline{w} : $C_n/C_n^{(1,4)} \longrightarrow \mathbb{K}$, wobei eine Nebenklasse $e + C_n^{(1,4)}$ abgebildet wird auf w(e).

FOLGERUNG 4.5.4. Es gibt eine injektive lineare Abbildung

$$\overline{\alpha}_n: \mathcal{V}_n/\mathcal{V}_{n-1} \longrightarrow (\mathcal{C}_n/\mathcal{C}_n^{(1,4)})^*.$$

BEWEIS. Homomorphiesatz.

Der folgende Satz, der besagt, dass obige Abbildung auch surjektiv ist, ist der Hauptsatz über Vassiliev-Invarianten. Auf die Darstellung des komplizierten Beweises müssen wir hier verzichten.

SATZ 4.5.5 (Kontsevich). Sei \mathbb{K} ein Körper der Charakteristik 0. Für jedes $n \in \mathbb{N}$ ist $\overline{\alpha}_n$ ein Isomorphismus von Vektorräumen

$$\mathcal{V}_n/\mathcal{V}_{n-1}\simeq (\mathcal{C}_n/\mathcal{C}_n^{(1,4)})^*.$$

BEMERKUNG 4.5.6. Da der Dualraum V^* eines *n*-dimensionalen Vektorraumes V auch die Dimension *n* hat, sind V und V^* isomorph. Daher könnte man die Dualbildung in der Formulierung des Satzes von Kontsevich auch weglassen. Die Dualbildung hat aber den Vorteil, dass man dann einen "natürlichen" Isomorphismus angeben kann.

4.5.7. Durch Betrachtung von Sehnendiagrammen kann man folgende Dimensionen berechnen.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$\dim \mathcal{V}_n$	1	1	2	3	6	10	19	33	60	104	184	316	548
$\dim \mathcal{V}_n/\mathcal{V}_{n-1}$	1	0	1	1	3	4	9	14	27	44	80	132	232

TABELLE 4.1. Dimensionen

4. VASSILIEV-INVARIANTEN

4.6. Vassiliev-Invarianten kleiner Ordnung

Bis n = 4 kann man noch "per Hand" die Räume der Sehnendiagramme und die 1-Term und 4-Term Relationen bestimmen. Außerdem werden wir Vassiliev-Invarianten der Ordnungen 2 und 3 explizit bestimmen.

PROPOSITION 4.6.1. (a) Eine Basis von $C_2/C_2^{(1,4)}$ ist gegeben durch (die Klasse von) (b) Eine Basis von $C_3/C_3^{(1,4)}$ ist gegeben durch (die Klasse von) (c) Eine Basis von $C_4/C_4^{(1,4)}$ ist gegeben durch (die Klassen von)

BEWEIS. (a) Klar.(b) In dem Faktorraum gilt, wegen der 4-Term Relation

Hier verschwindet der dritte Term wegen der 1-Term Relation, und man erhält

Da die letzten drei Sehnendiagramme in Abbildung 4.5 wegen der 1-Term Relation zu null werden, folgt die Behauptung.

(c) Es gelten die Relationen in Abbildung 4.7 Dies folgt jeweils leicht aus Betrachtung der folgenden zwei weiteren Sehnen, jeweils für den ersten Term dargestellt:

ABBILDUNG 4.7. Relationen in $C_4/C_4^{(1,4)}$

Es folgt, dass obige 3 Elemente ein Erzeugendensystem von $C_4/C_4^{(1,4)}$ bilden. Eine genauere Analyse aller möglichen Anwendungen der 4-Term Relationen zeigt, dass sich keine weiteren Relationen ergeben.

4.6.2. Wir kennen alle Vassiliev-Invarianten der Ordnungen 0 und 1. Sei nun n = 2. Nach dem Satz vom Kontsevich gibt es wegen $\dim(\mathcal{C}_2/\mathcal{C}_2^{(1,4)}) = 1$ modulo \mathcal{V}_1 und bis auf skalare Vielfache $\neq 0$ genau eine Vassiliev-Invariante $v_2 \in \mathcal{V}_2$ der Ordnung (genau) 2. Durch Normierung (Division durch einen geeigneten skalaren Faktor $\neq 0$) kann man annehmen, dass

$$(4.6.1)\qquad\qquad \widehat{v}_2(\bigcirc) = 1$$

gilt. (Das soll heißen, dass die Verlängerung von v_2 für alle Knoten mit genau 2 Doppelpunkten und dem angegebenen Sehnendiagramm den Wert 1 liefert; dies ist wohldefiniert, da nach Satz 4.5.2 der Wert nicht vom Knoten selbst abhängt.)

Subtrahiert man noch einen geeigneten konstanten Faktor (d. h. ein Element in \mathcal{V}_1), so kann man auch annehmen, dass

$$(4.6.2) v_2(\bigcirc) = 0$$

gilt (\bigcirc der Unknoten).

Wir berechnen nun den Wert von den Kleeblatt-Knoten, indem (4.6.1)und (4.6.2) ausgenutzt werden. Dazu muss man die Anzahl der Doppelpunkte mit Hilfe von (4.1.1) erhöhen.

$$v_{2}(\bigcirc) = -\widehat{v_{2}}(\bigcirc) + \widehat{v_{2}}(\bigcirc)$$
$$= -\widehat{v_{2}}(\bigcirc) + \widehat{v_{2}}(\bigcirc)$$
$$= \widehat{v_{2}}(\bigcirc) - \widehat{v_{2}}(\bigcirc)$$
$$= \widehat{v_{2}}(\bigcirc) - \widehat{v_{2}}(\bigcirc)$$

Also kann v_2 den (rechtshändigen) Kleeblatt-Knoten vom Unknoten unterscheiden. Eine analoge Rechnung ergibt, dass v_2 für den linksändigen Kleeblatt-Knoten auch den Wert 1 ergibt. Man kann mit Vassiliev-Invarianten der Ordnung 2 also nicht den links- vom rechtshändigen Kleeblatt-Knoten unterscheiden. UBUNG 4.6.3. Man zeige, dass v_2 für den Achter-Knoten den Wert -1 liefert.

4.6.4. Die beiden Kleeblatt-Knoten lassen sich durch eine Vassiliev-Invariante der Ordnung 3 unterscheiden: Der Raum $C_3/C_3^{(1,4)}$ ist eindimensional, also gibt es bis auf Vielfache und bis auf Vassiliev-Invarianten der Ordnung ≤ 2 genau eine Vassiliev-Invariante $v_3 \in \mathcal{V}_3$ von der Ordnung 3. Nach Normierung kann man

$$(4.6.3) \qquad \qquad \widehat{v}_3(\bigcirc) = 1$$

annehmen. Dadurch ist $v_3 \in \mathcal{V}_3$ noch nicht eindeutig festgelegt, aber diese Information genügt uns, um links- und rechtshändigen Kleeblatt-Knoten zu unterscheiden:

$$v_{3}(\bigcirc) - v_{3}(\bigcirc) = \widehat{v_{3}}(\bigcirc) - \widehat{v_{3}}(\bigcirc)$$
$$= \widehat{v_{3}}(\bigcirc) = 1.$$

Also unterscheidet sich der Wert des links- und des rechtshändigen Kleeblatt-Knotens um 1.

BEMERKUNG 4.6.5. Will man den Wert einer der beiden Kleeblatt-Knoten berechnen, muss man zunächst v_3 noch genauer bestimmen. Bei der Berechnung von

$$v_3(\bigcirc)$$

(als Übungsaufgabe empfohlen) muss man auch den Wert eines Knotens mit 2 Doppelpunkten kennen; z. B. liefert

$$(4.6.4) \qquad \qquad \widehat{v}_3(\bigcirc) = 0$$

eine gültige Festsetzung. Zusammen mit (4.6.5) $v_3(\bigcirc) = 0$ kann man nun v_3 für alle nicht-singulären Knoten berechnen. Die Beziehungen (4.6.3), (4.6.4) und (4.6.5) bilden die Einträge einer sogenannten Aktualitätstabelle für n = 3.

Für größere n muss man sich erst Aktualitätstabellen erstellen, um Vassiliev-Invarianten der Ordnung n explizit ausrechnen zu können. Ist die Tabelle erst einmal erstellt, so geschieht eine Berechnung durch Erhöhung der Anzahl der Doppelpunkte wie in den Beispielen zuvor. Für mehr Details bzgl. Aktualitätstabellen verweisen wir auf [**2**].

UBUNG 4.6.6. Man berechne v_3 für die beiden Kleeblatt-Knoten.

Literaturhinweise. Als grundlegende Originalliteratur über Vassiliev-Invarianten sind die Arbeiten von Joan Birman und Xiao-Song Lin [2] und von Dror Bar-Natan [1] zu nennen.

Für einen Beweis des Satzes von Kontsevich 4.5.5 sei auf [6] und [1] verwiesen. Eine Darstellung des Beweises findet man auch in dem im Internet zugänglichen Manuskript [4]von S. Duzhin, welches eine Einführung in die Vassiliev-Invarianten gibt. (Ein wesentlich erweitertes, sich in Vorbereitung befindendes Buchmanusskript von S. Chmutov und S. Duzhin findet man ebenfalls im Internet.)

Ein Kapitel über Vassiliev-Invarianten, wo auch Zusammenhänge zu Invarianten von Graphen beschrieben werden, findet man in dem Buch [7].

Literaturverzeichnis

- [1] D. Bar-Natan: On the Vassiliev Knot invariants, Topology 34 (1995), 423–472.
- [2] J. Birman, X. Lin: Knot polynomials and Vassiliev's invariants. Invent. Math. 111 (1993), 225–270.
- [3] G. Burde, H. Zieschang: Knots. Walter de Gruyter, Berlin, 1985.
- [4] S. Duzhin: Lectures on Vassiliev knot invariants. Tokyo, 1999.
- [5] E. M. Feichtner: Polynominvarianten der Knotentheorie. Quellen ihrer Definition. Diplomarbeit, FU Berlin, 1994.
- [6] M. Kontsevich: Vassiliev's Knot invariants, I. M. Gelfand Seminar, Advances in Soviet Math., vol. 16, part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150.
- [7] S. Lando, A. Zvonkin: Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, Springer-Verlag, vol. 141, Berlin, 2004.
- [8] W. B. R. Lickorish: An Introduction to Knot Theory. Springer-Verlag, New York, 1997.
- [9] W. Lück: Das Jones-Polynom und Entwirrungs-Invarianten in der Knotentheorie. Math. Semesterber. 44 (1997), no. 1, 37–72.
- [10] K. Murasugi: Knot Theory and its Applications. Birkhäuser, Boston, 1996.
- [11] V. V. Prasolov und A. B. Sossinsky: Knots, Links, Braids and 3-Manifolds. An introduction to the new invariants in low-dimensional topology. American Mathematical Society, Providence R.I., 1997.
- [12] A. Sossinsky: Mathematik der Knoten. Wie eine Theorie entsteht. Rowohlt Taschenbuch, Reinbek, 2000.
- [13] A. Stoimenow: Abzählen von Sehnendiagrammen und Asymptotik von Vassiliev-Invarianten, Dissertation (digital), FU Berlin, 1999.
- [14] V. G. Turaev: The Yang-Baxter equation and invariants of links. Invent. Math. 92 (1988), 527–553.