Weighted projective lines and invariant flags of nilpotent operators

Dirk Kussin

Tokyo, 15 August, 2010

Dirk Kussin Tokyo, 15 August, 2010 · 1 / 26

Definition (Homomorphism categories)

Let Λ be an Artin algebra. Denote by $\mathcal{H}(\Lambda)$ the category of all morphisms

$$A \stackrel{f}{\to} B$$

in mod Λ . Morphisms in $\mathcal{H}(\Lambda)$ are given by commutative diagrams.

Remark

$$\mathcal{H}(\Lambda) \simeq \mathsf{mod} \begin{pmatrix} \Lambda & \Lambda \\ 0 & \Lambda \end{pmatrix} \text{ is abelian}.$$

Definition (Submodule categories)

Let $\mathfrak{S}(\Lambda) \subseteq \mathcal{H}(\Lambda)$ be the full subcategory of monomorphisms (embeddings).

Remark

 $\mathfrak{S}(\Lambda)$ is an exact Krull-Remak-Schmidt category (induced by structure on $\mathcal{H}(\Lambda)$).

Birkhoff Problem

Classify the objects in $\mathfrak{S}(\Lambda)$.

Examples

- 1. G. Birkhoff (1934): Subgroups of finite abelian p-groups (p prime). $\Lambda = \mathbb{Z}/p^b$. In 1999 classificication was done by Richman-Walker for $b \leq 5$.
- 2. C. M. Ringel and M. Schmidmeier (2006, 2008): Invariant subspaces of nilpotent operators. $\Lambda = k[T]/T^b$ (*b* fixed nilpotency degree).
- 3. D. Simson (2002, 2007): More complex subconfigurations than in 2. Birkhoff type problems.

Several other authors working on this subject: Audrey Moore, Pu Zhang, Xiao-Wu Chen, ...

Alternative approach: K-Lenzing-Meltzer

Dirk Kussin

Tokyo, 15 August, 2010 · 4 / 26

Fix a field k and an integer $b \ge 2$.

 $\mathfrak{S}(b)$: Category of triples (V,f,U), with V fin. dim. k-vector space, f an endomorphism of V such that $f^b=0$ and $U\subseteq V$ is an f-invariant subspace. Then $\mathfrak{S}(b)\simeq\mathfrak{S}(k[T]/T^b)$.

Ringel-Schmidmeier (2008)

Construction of AR-quivers of $\mathfrak{S}(b)$.

- 1. For $b \le 5$ is $\mathfrak{S}(b)$ of finite representation type.
- 2. $\mathfrak{S}(6)$ is tame of tubular type.
- 3. For $b \ge 7$ is $\mathfrak{S}(b)$ of wild type.

Tool: Covering situation. $k[T]/T^b$ is \mathbb{Z} -graded by deg T=1. Considering graded submodules, morphisms of degree zero, yields $\mathfrak{S}^{\mathbb{Z}}(b)$.

Proposition (Ringel-Schmidmeier (2008))

The natural covering functor $\mathfrak{S}^{\mathbb{Z}}(b) \to \mathfrak{S}(b)$ is dense for $b \leq 6$.

Dirk Kussin

Frobenius category and stable category

Lemma

 $\mathfrak{S}(b)$ is a Frobenius category.

Ringel-Schmidmeier observed that the stable category

$$\underline{\mathfrak{S}}(b)$$

is (triangulated) Calabi-Yau and computed the (fractional) Calabi-Yau dimension.

Moreover: these categories form a so-called ADE-chain (compare Lenzing's workshop talk).

Dirk Kussin Tokyo, 15 August, 2010 · 6 / 26

More general setting considered by D. Simson (2002, 2007):

Let (I, <) be a finite poset with unique maximal element *.

Denote by $\mathfrak{S}_I(b)$ be the category of tuples $(U_i)_{i\in I}$ such that

- 1. U_i is a fin. dim. $k[T]/T^b$ -module for each $i \in I$;
- 2. $U_i \subseteq U_i$ is a submodule for all $i \leq j$.

Similarly $\mathfrak{S}_{I}^{\mathbb{Z}}(b)$ is defined in the graded sense.

Consider I as guiver by $i \rightarrow i$ for i < i.

Let $\mathcal{A}_{l}^{(\mathbb{Z})}(b)$ be the category of (contravariant) representations of l in $\operatorname{mod}^{(\mathbb{Z})}(k[T]/T^b).$

Lemma

 $\mathfrak{S}_{L}^{(\mathbb{Z})}(b)$ is equivalent to the full subcategory of $\mathcal{A}_{L}^{(\mathbb{Z})}(b)$ consisting of the mono representations, that is, where all arrows of I are realized by mono's.

Corollary

 $\mathfrak{S}_I(b)$ and $\mathfrak{S}_I^{\mathbb{Z}}(b)$ are exact categories (Quillen sense) with enough projectives and enough injectives.

Note

In general $\mathfrak{S}_I(b)$ and $\mathfrak{S}_I^{\mathbb{Z}}(b)$ are not Frobenius!

Simson (2002, 2007)

Determination of the representation type of $\mathfrak{S}_{I}(b)$.

Dirk Kussin Tokyo, 15 August, 2010 · 8 / 26

Flags

One flag of length a. $I: * \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow a-2 \rightarrow a-1$.

$$\mathfrak{S}_a(b) := \mathfrak{S}_I(b), \ \mathfrak{S}_a^{\mathbb{Z}}(b) := \mathfrak{S}_I^{\mathbb{Z}}(b).$$

Two flags of lengths a_1 , a_2 , resp. I:

$$\begin{array}{c} a_2-1 \\ \uparrow \\ a_2-2 \\ \uparrow \\ \vdots \\ \uparrow \\ 1 \\ \uparrow \\ * \longrightarrow 1 \longrightarrow \ldots \longrightarrow a_1-2 \longrightarrow a_1-1 \end{array}$$

$$\mathfrak{S}_{a_1,a_2}(b) := \mathfrak{S}_I(b), \ \mathfrak{S}_{a_1,a_2}^{\mathbb{Z}}(b) := \mathfrak{S}_I^{\mathbb{Z}}(b).$$

Ringel-Schmidmeier: $\mathfrak{S}_{1,2}(b)$. Moore-Schmidmeier: e.g. tubular case $\mathfrak{S}_{1,3}(4)$, ...

Integers a_1 , a_2 , b > 2. Wlog $a_1 < a_2$.

$$S = rac{k[X_1,X_2,Y]}{X_1^{a_1} + X_2^{a_2} + Y^b}$$
 commutative ring

 $\mathbb{L} = \mathbb{L}(a_1, a_2, b) = \langle \vec{x}_1, \vec{x}_2, \vec{y} \rangle$ abelian group of rank 1 with relations $a_1\vec{x}_1 = a_2\vec{x}_2 = b\vec{v}$.

S is L-graded by deg $X_i = \vec{x_i}$, deg $Y = \vec{y}$.

 $\mathbb{X} = \mathbb{X}(a_1, a_2, b)$ weighted projective line (Geigle-Lenzing) category of (graded) coherent sheaves $coh(X) = mod^{\mathbb{L}}(S) / mod^{\mathbb{L}}_{n}(S)$ induced quotient functor $q \colon \mathsf{mod}^{\mathbb{L}}(S) \to \mathsf{coh}(\mathbb{X})$ sends $S(\vec{x})$ to $\mathcal{O}(\vec{x})$.

Proposition

coh(X)

- is a Hom-finite hereditary category
- is a Krull-Remak-Schmidt category
- ▶ has Serre duality D Ext¹(X, Y) = Hom(Y, X($\vec{\omega}$)) with $\vec{\omega} = -\vec{x}_1 - \vec{x}_2 + (b-1)\vec{y}$ the dualizing element
- has a tilting object.

Dirk Kussin

Tokyo, 15 August, 2010 · 11 / 26

Vector bundles

 $\text{vect}(\mathbb{X}) \subseteq \text{coh}(\mathbb{X})$ full subcategory of vector bundles (= torsion-free sheaves).

Proposition

The quotient functor q induces an equivalence

$$\mathsf{CM}^{\mathbb{L}}(S) \simeq \mathsf{vect}(\mathbb{X}).$$

Proposition

1. Each line bundle is isomorphic to $\mathcal{O}(\vec{x})$ for some unique $\vec{x} \in \mathbb{L}$. Thus

$$\mathcal{L} := \operatorname{Pic} \mathbb{X} \simeq \mathbb{L}$$
.

2. $\mathsf{Hom}(\mathcal{O}(\vec{x}), \mathcal{O}(\vec{y})) \simeq S_{\vec{y}-\vec{x}}$.

Dirk Kussin

Lemma (\vec{y} -normalform)

Each $\vec{x} \in \mathbb{L}$ has a unique expression

$$\vec{x} = m_1 \vec{x}_1 + m_2 \vec{x}_2 + n \vec{y}$$

with $0 \le m_i \le a_i - 1$ and $n \in \mathbb{Z}$.

 \Rightarrow Fundamentaldomain of \mathbb{L} mod $\mathbb{Z}\vec{y}$, e.g. in case (5, 4, b):

Dirk Kussin

Definition

1. $\mathcal{L} = \mathcal{P} \sqcup \mathcal{F}$ with

$$\mathcal{P} = \{ \mathcal{O}(\vec{x}) \mid \vec{x} = m_1 \vec{x}_1 + m_2 \vec{x}_2 + n \vec{y}, \ 0 \le m_i \le a_i - 2, \ n \in \mathbb{Z} \},$$

 $\mathcal{F} = \mathcal{L} \setminus \mathcal{P}$. Call a line bundle $L \in \mathcal{P}$ persistent, $L \in \mathcal{F}$ fading.

- 2. $\mathcal{P}^{proj} := \{ \mathcal{O}(\vec{x}) \in \mathcal{P} \mid m_1 = 0 \text{ or } m_2 = 0 \}$. Call $L \in \mathcal{P}^{proj}$ a projective line bundle.
- 3. $\mathcal{P}^{inj} := \{ \mathcal{O}(\vec{x}) \in \mathcal{P} \mid m_1 = a_1 2 \text{ or } m_2 = a_2 2 \}$. Call $L \in \mathcal{P}^{inj}$ an injective line bundle.
- 4. $\partial \mathcal{L} := \mathcal{P}^{proj} \sqcup \mathcal{F}$.

Example: Case (5, 4, b).

 $\circ = \mathcal{F}, \bullet = \mathcal{P}^{proj} \setminus \mathcal{P}^{inj}, \bullet = \mathcal{P}^{inj} \setminus \mathcal{P}^{proj}, \bullet = \mathcal{P}^{proj} \cap \mathcal{P}^{inj}$

Auslander-Reiten translation

AR translation τ is given by shift by

$$ec{\omega} = -ec{x}_1 - ec{x}_2 + (b-1)ec{y} \equiv -ec{x}_1 - ec{x}_2 mod \mathbb{Z}ec{y}.$$

If getting out of the fundamental region compute modulo $a_1\vec{x_1}$ or modulo $a_2\vec{x_2}$, resp.

Dirk Kussin Tokyo, 15 August, 2010 · 15 / 26

Joint work with Helmut Lenzing and Hagen Meltzer.

Proposition

1. The equivalence

$$\mathsf{vect}(\mathbb{X}) \simeq \mathsf{CM}^{\mathbb{L}}(S) \subseteq \mathsf{mod}^{\mathbb{L}}(S)$$

induces an exact structure on $\text{vect}(\mathbb{X})$, so that $\text{vect}(\mathbb{X})$ is a Frobenius category with $\mathcal L$ the system of indecomposable projectives/injectives.

2. A sequence $\eta: 0 \to A \to B \to C \to 0$ in $\text{vect}(\mathbb{X})$ is exact if and only if $\text{Hom}(L, \eta)$ is exact for all $L \in \mathcal{L}$. " \mathcal{L} -exactness"

Similarly one defines $\partial \mathcal{L}$ -exactness, which provides an additional exact structure on vect(\mathbb{X}).

Dirk Kussin Tokyo, 15 August, 2010 · 17 / 26

Theorem A (KLM 2010)

On the factor category

$$\mathsf{vect}(\mathbb{X})/[\mathcal{F}]$$

there are two natural exact structures:

- 1. one induced by \mathcal{L} -exactness such that it becomes a Frobenius category with indec. projectives/injectives given by \mathcal{P} .
- 2. the other induced by $\partial \mathcal{L}$ -exactness, such that the indec. projectives given by \mathcal{P}^{proj} and indec. injectives given by \mathcal{P}^{inj} .

Moreover, these two structures coincide if and only if $a_1 = 2$, i.e. in the one-flag case.

We call $\text{vect}(\mathbb{X})/[\mathcal{F}]$ with the exact structure induced by $\partial \mathcal{L}$ -exactness almost Frobenius. One has to enlarge the system of projectives by forming finite segments in order to get a Frobenius category:

$$\mathcal{P} = \sqcup_{P \in \mathcal{P}^{proj}} \{ P, \tau^{-}P, \dots, \tau^{-n_{P}}P \}$$

with $\tau^{-n_P}P$ injective. $P\mapsto \tau^{-n_P}P$ induces a bijective correspondence between projectives and injectives.

Coincidence of exact structures

Lemma

$$\mathcal{P} = \mathcal{P}^{proj} \quad \Leftrightarrow \quad \mathcal{P}^{proj} = \mathcal{P}^{inj} \quad \Leftrightarrow \quad a_1 = 2 \quad \Leftrightarrow \quad \text{one-flag case.}$$

Proof immediately clear from the picture

Dirk Kussin Tokyo, 15 August, 2010 · 19 / 26

Main results

Theorem B (KLM 2010)

$$\mathbb{X} = \mathbb{X}(a_1, a_2, b).$$

1. The functor $E \mapsto \underline{\mathcal{P}}^{\mathsf{proj}}(-,E)$ induces an equivalence

$$\operatorname{\mathsf{vect}}(\mathbb{X})/[\mathcal{F}] \simeq \mathfrak{S}^{\mathbb{Z}}_{a_1-1,a_2-1}(b)$$

of almost Frobenius categories. Shift by \vec{y} corresponds to degree shift by 1.

2. The stable categories $(\text{vect}(\mathbb{X})/[\mathcal{F}])/(\mathcal{P}/[\mathcal{F}])$ and $\text{vect}(\mathbb{X})/[\mathcal{L}]$ are equivalent as triangulated categories; notation: $\underline{\text{vect}}(\mathbb{X})$.

Applications

- 1. AR-quiver of $\mathfrak{S}_{a_1-1,a_2-1}^{\mathbb{Z}}(b)$ and $\underline{\mathfrak{S}}_{a_1-1,a_2-1}^{\mathbb{Z}}(b)$ by deleting (fading, all, resp.) line bundles from AR-quiver of vect(\mathbb{X}).
- 2. Tilting objects in $\underline{\mathfrak{S}}_{a_1-1,a_2-1}^{\mathbb{Z}}(b)$.
- 3. Fractional CY-dimension of $\underline{\mathfrak{G}}_{a_1-1,a_2-1}^{\mathbb{Z}}(b)$ from Euler characteristic.

For more details compare Meltzer's talk this afternoon.

Schematic overview

Dirk Kussin Tokyo, 15 August, 2010 · 21 / 26

(3,4,2): a proper 2-flag case

Fundamental domain mod $\mathbb{Z}\vec{y}$

0 0 0

Dirk Kussin Tokyo, 15 August, 2010 · 23 / 26

One weight type / three different flag problems

If the three weights are pairwise different, e.g. (2,3,4), we get three different systems of fading line bundles and hence three different factor categories:

This also explains a duality effect observed by Happel-Seidel.

Dirk Kussin Tokyo, 15 August, 2010 · 24 / 26

Case (2, 3, 4)

0 0

Dirk Kussin Tokyo, 15 August, 2010 · 25 / 26

Case (2, 4, 3)

Fundamental domain mod $\mathbb{Z}\vec{y}$

0 0

0

• (

_ _

Dirk Kussin Tokyo, 15 August, 2010 · 26 / 26