(i) Für das Integral $I = \int_0^2 (1+2x)e^x dx$ ist mit Hilfe der KEPLERschen Faßregel ein Näherungswert $\tilde{I}_{\text{Kepler}}$ zu bestimmen. Geben Sie diesen zunächst exakt an (d.h., ohne eventuell auftretende Potenzen von e mit dem Taschenrechner zu berechnen).

i	0	1	2
x_i			
y_i			

Schrittweite: $\Delta = \dots$

Exakte Form des Näherungswertes:

dieser Wert ist näherungsweise (Taschenrechner!)

$ ilde{I}_{ ext{Kepler}} pprox$	¥
---------------------------------	---

Rechnungen:

(ii) Berechnen Sie das unter (i) genannte Integral exakt (z.B. mit Hilfe partieller Integration).

$$I = \int_0^2 (1+2x)e^x dx = \boxed{}$$

Näherung (Taschenrechner) $I \approx$

(iii) Bestimmen Sie unter Verwendung der Substitutionsmethode

$$\int \frac{1}{\sqrt{2x}} e^{\sqrt{2x}} dx =$$

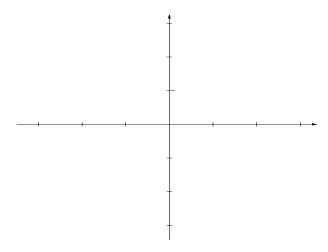
 ${\bf Rechnungen:}$

Durch den Ausdruck

$$f(x,y) := \sqrt{1 + xy}$$

soll eine Funktion f für die Paare $(x,y) \in \mathbb{R}^2$ definiert werden, für die dieser Ausdruck sinnvoll ist.

(i) Skizzieren Sie den Definitionsbereich D_f (schraffiert) in nachfolgendem Diagramm: Geben Sie mindestens 2 Punkte an, die auf dem Rand von D_f liegen.



(ii) Skizzieren Sie den Vertikalschnitt " $x = \frac{1}{2}$ " von f:

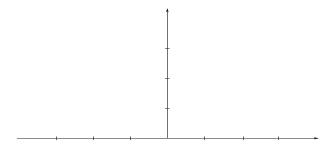
Formel: $f\left(\frac{1}{2},y\right) =$

Geben Sie 2 Punkte an, die auf dem Graphen des Schnittes liegen!

(iii) Skizzieren Sie den Vertikalschnitt "y=-x" von f (als Funktion von x):

Formel: f(x, -x) =

Geben Sie 2 Punkte an, die auf dem Graphen des Schnittes liegen!



(iv) (Erinnerung: $f(x,y) := \sqrt{1+xy}$) Skizzieren Sie den Vertikalschnitt "y=x" von f (als Funktion von x)!

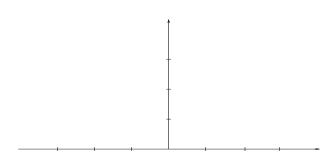
Formel: f(x,x) = definiert für $x \in$

Untersuchen Sie das Monotonie- und Krümmungsverhalten dieser Schnittkurve anhand ihrer Ableitungen.

Rechnung:

$$\frac{d}{dx}f(x,x) =$$

$$\frac{d^2}{dx^2}f(x,x) =$$

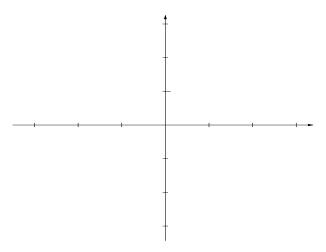


Der Vertikalschnitt $x \mapsto f(x, x)$ ist ...

(Zutreffendes ankreuzen, Nichtzutreffendes streichen, Text ergänzen:)

- \bigcirc streng monoton wachsend für $x \dots$
- \bigcirc streng monoton fallend für $x \dots$
- strikt konvex
- O strikt konkav

(v) (Erinnerung: $f(x,y)=\sqrt{1+xy}$) Skizzieren Sie die Höhenlinie " $f(x,y)=\sqrt{2}$ ". Geben Sie 2 Punkte an, die auf der Höhenlinie liegen.



- (vi) Stellen Sie unter Ausnutzung von (ii) (v) fest, welche Eigenschaften die Funktion $(x,y)\mapsto f(x,y)$ insgesamt besitzt:
 - f ist nach unten beschränkt
 - O JA, und zwar durch die Konstante
 - O NEIN, denn
 - f ist nach oben beschränkt
 - O JA, und zwar durch die Konstante
 - O NEIN, denn
 - f ist konvex/konkav,
 - O JA, weil
 - O NEIN, weil

Durch $f(x,y):=(x^2-16)(25-y^2)+400, \ (x,y)\in\mathbb{R}^2$ wird auf \mathbb{R}^2 eine Funktion f definiert.

- (i) Man untersuche f auf lokale und globale Extremwerte.
- (ii) Man untersuche, ob die Funktion f eingeschränkt auf den "ökonomischen Defintionsbereich" $D_{oec} := [0,4] \times [0,5]$ sich zur Modellierung einer (Gesamt-) Kostenfunktion eignet. (Überprüfen Sie, ob gilt
 - (1) $f(0,0) \ge 0$ (nichtnegative Fixkosten)
 - (2) $f'(x,y) \ge 0$ für $(x,y) \in D_{oec}$ (f ist monoton wachsend)).
- (iii) Begründen Sie anhand der Ergebnisse von (i), warum sich f auf D_{oec} <u>nicht</u> zur Modellierung einer konkaven Nutzenfunktion eignet.

Lösung (i) Gradient (als Funktion von (x, y)):

$$f'(x,y) = \boxed{}$$

Hesse-Matrix (in Abhängigkeit von (x, y)):

$$f''(x,y) =$$

Rechnungen: (Ermittlung der stationären Punkte):

• Tabelle und Beurteilung aller stationären Punkte:

Nr.	Punkt		Funktionsw.:	Hesse-Matrix	${\bf Hesse-Det.}$	Art des Punktes
$\underline{}$	x_i	y_i	$f(x_i,y_i)$	$f''(x_i,y_i)$	$ H_1 $ $ H_2 $	
1						
2						
3						
4						
5						

0	JA, und zwar an der Stelle $(x_{min}, y_{min}) =$	
0	NEIN, weil	 l

Besitzt die Funktion f auf \mathbb{R}^2 ein globales Minimum?

Lösung (ii) (Nichtzutreffendes streichen!)

• Es gilt
$$f(0,0) = \boxed{ < | \le | = | \ge | > 0.}$$

• Für $(x,y) \in D_{oec} = [0,4] \times [0,5]$ gilt

$$f_x(x,y)= oxed{ < | \leq | = | \geq | > 0 ext{ und} }$$
 $f_y(x,y)= oxed{ < | \leq | = | \geq | > 0. }$

Somit ist f auf D_{oec} (Zutreffendes ankreuzen)

- monoton wachsend
- omonoton fallend
- weder wachsend noch fallend.
- $\bullet\,$ Daher ist fauf D_{oec} als Modell einer Gesamtkostenfunktion
 - Geeignet
 - O ungeeignet.

Lösung (iii)

f eignet sich nicht zur Modellierung einer konkaven Nutzenfunktion auf D_{oec} , weil D_{oec} einen-Punkt enthält und folglich nicht konkav sein kann.

Man untersuche mit Hilfe der LAGRANGEschen Multiplikatorenmethode die auf \mathbb{R}^2 durch

$$f(x,y) := x^2y$$

definierte Funktion unter der Nebenbedingung

$$x + y^2 - 1 = 0 (1)$$

auf lokale Extrema.

(i) Bestimmen Sie die Lagrangefunktion und ihre partiellen Ableitungen:

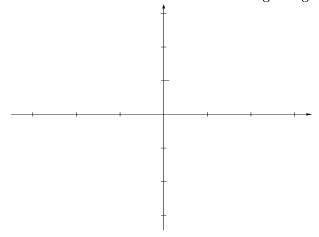
 $\mathbb{L} = \mathbb{L}(x, y, \lambda) = \dots$

 $\mathbb{L}_x = \dots$

 $\mathbb{L}_y = \dots$

 $\mathbb{L}_{\lambda} = \dots$

- (ii) An 4 Punkten $(x^1, y^1), \ldots, (x^4, y^4)$ sind die notwendigen Bedingungen für das Vorliegen eines lokalen Extremums von f unter der Nebenbedingung (1) erfüllt. Tragen Sie diese in die nebenstehende Tabelle ein.
- (iii) Skizzieren Sie die Nebenbedingungskurve im \mathbb{R}^2 und zeichnen Sie die Punkte $(x^1, y^1), \dots, (x^4, y^4)$ in die Skizze ein. Geben Sie auch die zugehörigen Funktionswerte $f(x^i, y^i)$ mit an!



(iv)	Kann	anhand	der	Skizze	beurteilt	werden,	ob ı	und	um	welche	Art	von	Extrempunk	ten es	sich
	hande	lt?													
	(Ergär	nzen Sie	die	Tabelle	e.)										

LÖSUNGSTABELLE

i	x_i	y_1	$egin{array}{c} \lambda_i \ (\mathrm{exakt}) \end{array}$	$f(x_i, y_i) \\ (\text{exakt})$	Beurteilung des Punktes
1					
2					
3					
4					

NEBENRECHNUNGEN:

Die Gewinnfunktion eines Unternehmens lautet

$$G(x,y) = 100 - 2(x-10)^2 - 4(y-12)^4$$
 [GE]

in Abhängigkeit von den Ausbringungsmengen x und y [in ME] zweier Güter X und Y.

(i) Bestimmen Sie das totale Differential von G allgemein und an der Stelle $(x_0, y_0) = (8, 11)$! totales Differential von G allgemein:

$$dG =$$

totales Differential von G an der Stelle $(x_0, y_0) = (8, 11)$:

$$dG =$$

(ii) Bestimmen Sie den Zuwachs ΔG beim Übergang vom Punkt $(x_0,y_0)=(8,11)$ zum Punkt $(x_1,y_1)=(8,1;11,1)$ näherungsweise:

$\Delta G \approx$		

(iii) Die momentanen Ausbringungsmengen $(x_0, y_0) = (8, 11)$ sollen geringfügig abgeändert werden, und zwar so, dass sich dadurch ein höchstmöglicher Gewinnzuwachs ergibt. Welche Proportion $\Delta x : \Delta y$ der Zuwächse von x und y ist dabei zu wählen?

$$\Delta x : \Delta y =$$