- Dietz - - WS 2002/2003 -

Übungsaufgaben zur "Stochastik für Informatiker" 10. Serie

1. Verteilung Aufgabe 3.

In einer Werkstatt werden Kraftfahrzeuge repariert. Die Reparaturzeit T besitze eine spezielle Gammaverteilung mit der Dichte

$$f(t) = \lambda^2 \cdot t \cdot e^{-\lambda \cdot t}, \quad t \ge 0$$

und dem Parameter $\lambda = 0, 2 \cdot [Std]^{-1}$. Wie groß ist die Wahrscheinlichkeit, dass die Reparaturzeit höchstens 5 Stunden beträgt? Wie groß ist der Erwartungswert der Reparaturzeit?

(5 Punkte)

2. Verteilung Aufgabe 4.

Es sollen Werkstücke mit einem Durchmesser von 250 mm produziert werden. Die Gütekontrolle schreibt als Toleranzgrenzen $\pm 7,5$ mm Abweichung vor. Bei den von Maschine 1 produzierten Stücken ist der Durchmesser eine normalverteilte Zufallsgröße mit $\mu=250$ mm und $\sigma^2=16$ mm^2 , während die Werkstücke von Maschine 2 eine normalverteilten Durchmesser mit $\mu=248$ mm und $\sigma^2=9$ mm^2 haben. Für welche Maschine ist die Wahrscheinlichkeit, Ausschuss zu produzieren, größer?

(5 Punkte)

3. Verteilung Aufgabe 5.

Die Dicke von Stahlblech sei normalverteilt mit $\mu = 1,75$ cm und $\sigma = 0,03$ cm. Mit welcher Wahrscheinlichkeit liegt die Dicke eines Bleches im Intervall [1,70;1,80] [cm]?

(4 Punkte)

(*)-Aufgabe:

4. Würfel

Beim zweimaligen Werfen eines idealen Würfels bezeichne X_1 die zuerst und X_2 die danach gewürfelte Augenzahl sowie $U := min(X_1, X_2), \ V := max(X_1, X_2).$

(i) Tabellieren Sie die Wahrscheinlichkeiten

$$p_{ij} := P(U = i, V = j)$$
 für $i, j = 1, ..., 6$

- (ii) Bestimmen Sie EX_1 , EX_2 , D^2X_1 und D^2X_2 .
- (iii) Berechnen Sie EU, EV und EUV.
- (iv) Sind X_1 und X_2 unabhängig?
- (v) Sind U und V unabhängig?
- (vi) Bestimmen Sie $D^2(U+V)$ mit geringstmöglichen Rechenaufwand.

(12 Punkte)

Abgabe: bis 3.2.03 16.00 Uhr Besprechung: ab 4.2.03