

1. Es sei $D \subset \mathbb{R}^n$ eine nichtleere konvexe Menge.

Zeigen Sie

- (i) Sind $f, g : \mathbb{R}^n \to \mathbb{R}$ konvexe Funktionen und $\lambda \geq 0, \mu \geq 0$, dann ist auch die Funktion $\lambda f + \mu g$ konvex.
- (ii) Es seien $a, b : \mathbb{R} \to \mathbb{R}$ konvexe Funktionen (einer Veränderlichen!). Dann ist die durch S(x,y) := a(x) + b(y) auf \mathbb{R}^2 definierte Funktion S konvex.
- (iii) Sind $\psi:D\to I\!\!R$ eine konvexe und $\varphi:I\!\!R\to I\!\!R$ eine monoton wachsende konvexe Funktion, dann ist die durch

$$\tau(\underline{x}) := \varphi \circ \psi(\underline{x}) := \varphi(\psi(\underline{x})), \quad \underline{x} \in D,$$

definierte Funktion ebenfalls konvex.

(Die Aussage ist falsch, wenn nur gefordert wird, dass φ konvex ist.)

Untersuchen Sie mit Hilfe von (i) - (iii) die folgenden Funktionen auf $I\!\!R$ auf Konvexität:

a)
$$h(x,y) = 24(x+y)^2 - 11\sqrt{y}$$

b)
$$\tau(x,y) = e^{x^2 + y^4}$$