

SERIE 2.8

1. Ankreuzen Definitheit und stat. Punkte

Eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ besitze genau einen stationären Punkt mit zugehöriger Hesse-Matrix H. Entscheiden Sie in den nachfolgenden Beispielen - soweit möglich - über die Definitheit von H und die Art des stationären Punktes. (Alle zutreffenden Felder ankreuzen!)

H	Definitheit:	Art des stat. Punktes		Punkte	
$\left(\begin{array}{cc} -2 & -1 \\ -1 & -3 \end{array}\right)$		SP MAX MIN k.B. ?	$\frac{1}{2}$	$\frac{1}{2}$	
$\left(\begin{array}{cc} 0 & 1 \\ 1 & 2 \end{array}\right)$		SP MAX MIN k.B. ?	$\frac{1}{2}$	$\frac{1}{2}$	
$\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$		SP MAX MIN k.B. ?	$\frac{1}{2}$	$\frac{1}{2}$	
$\left(\begin{array}{cc} 4 & 2 \\ 2 & 3 \end{array}\right)$		SP MAX MIN k.B. ?	$\frac{1}{2}$	$\frac{1}{2}$	
$\left(\begin{array}{cc} 5 & 6 \\ 6 & 6 \end{array}\right)$		SP MAX MIN k.B. ?	$\frac{1}{2}$	$\frac{1}{2}$	
$\left(\begin{array}{cc}0&-1\\-1&0\end{array}\right)$		SP MAX MIN k.B. ?	$\frac{1}{2}$	$\frac{1}{2}$	
$ \left(\begin{array}{ccc} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 0 \end{array}\right) $		SP MAX MIN k.B. ?	2	1	

Legende:

\succ	$\left. egin{array}{l} ext{positiv} \\ ext{negativ} \end{array} \right\} ext{definit}$	SP	(verallg.) Sattelpunkt
\prec	negativ) definit	MAX	(lokaler) Maximumpunkt
<u>></u>	$\left. \begin{array}{c} { m positiv} \\ { m negativ} \end{array} \right\}$ semidefinit	MIN	(lokaler) Minimumpunkt
	•	k.B.	keine Beurteilung möglich ohne Zusatz – Info
=	sowohl \succeq als auch \preceq	?	weiß nicht
\leq	indefinit		

Hinweis zur Bewertung:

- \bullet Eine richtige Antwort ergibt die angegebene Punktzahl.
- Eine falsche Antwort ergibt entsprechend viele Minuspunkte.
- "gar nichts ankreuzen" ergibt ebenfalls Minuspunkte.
- "weiß nicht" ergibt jeweils 0 Punkte.

Daher: Im Zweifelsfall "weiß nicht" ankreuzen.

AUSSERDEM: NEBENRECHNUNGEN BITTE AUF GESONDERTEM BLATT BEIFÜGEN!

2. Lokales Maximum und Minimum Wir betrachten die durch

$$f(x,y) = 4x^4 - 8xy + \frac{2}{27}y^2$$
 für $(x,y) \in \mathbb{R}^2$

definierte Funktion f.

- (a) Berechnen Sie den Gradienten $\nabla f = (f_x, f_y)$ und die Hesse-Matrix $H := \nabla^2 f = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$ von f.
- (b) Berechnen Sie alle stationären Punkte von f und klassifizieren Sie diese dahingehend, ob ein lokaler Minimum- bzw. Maximumpunkt oder ein (verallgemeinerter) Sattelpunkt vorliegt oder evtl. anhand der Hesse-Matrix allein eine Beurteilung nicht möglich ist.
- (c) Ist f auf einem Teil des Definitionsbereiches konkav/konvex? Wenn ja, auf welchem?

3. Lokale Extrema ankreuzen I Auf \mathbb{R}^2 werde die Funktion f

$$f(x,y) = x^4 - 4x^2y^2 + xy^2$$

betrachtet. Diese besitzt (0,0) als stationären Punkt. Stellen Sie fest, ob weitere stationären Punkte existieren, und klassifizieren Sie diese mit Hilfe der Hesse – Matrix bzw. durch Analyse von Vertikalschnitten (z.B. "y = ax" für geeignete Konstanten a).

Kreuzen Sie die zutreffenden Felder an:

Der Punkt	ist stationärer Punkt	und zwar (falls JA):	(falls NEIN):	Pur	kte
(0,0)	JA	SP MAX MIN ?	Entfällt		1
$\left(\frac{1}{8}, -\frac{1}{4}\right)$	JA NEIN ?	SP MAX MIN ?	Entfällt	1	1
$\left(\frac{1}{4}, \frac{1}{4}\right)$	JA NEIN ?	SP MAX MIN ?	Entfällt	1	1
$\left(-\frac{1}{4}, \frac{1}{8}\right)$	JA NEIN ?	SP MAX MIN ?	Entfällt	1	1
$\left(-\frac{1}{4}, \frac{1}{4}\right)$	JA NEIN ?	SP MAX MIN ?	Entfällt	1	1
$\left(\frac{1}{4}, -\frac{1}{4}\right)$	JA NEIN ?	SP MAX MIN ?	Entfällt	1	1
$\left(0,\frac{1}{4}\right)$	JA NEIN ?	SP MAX MIN ?	Entfällt	1	1

Hinweis: Punktvergabe analog zu Aufgabe 2.8.1 (minimal 0, maximal 13 Punkte). Nebenrechnungen bitte beifügen.

Abgabe: bis 17.06.2005 11.00 Uhr Box 114, 117 (grün) auf D1-Flur Rückgabe: eine Woche später in den Übungsgruppen