

Entfällt

SERIE 2.10

1. Funktionsanalyse Auf $D = \mathbb{R}^2$ werde die Funktion f mit

$$f(x,y) = 6xy - x^2y - 3y^3$$

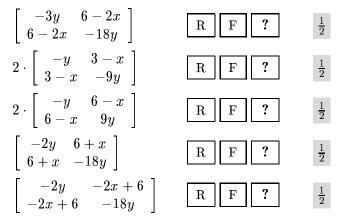
betrachtet.

[0, 1]

- I. Kreuzen Sie alle Ihrer Meinung nach zutreffenden Antworten an:
 - a) Der Gradient f' von f lautet $f'(x,y) = \dots$

$$\begin{bmatrix} 6y + 2xy , 6x - 9y^2 - x^2 \end{bmatrix}$$
 R F ?
$$\begin{bmatrix} \frac{1}{2} \\ (6 - 2x)y , x(6 - x) - 9y^2 \end{bmatrix}$$
 R F ?
$$\begin{bmatrix} \frac{1}{2} \\ (6y - 2x)y , 6x - 3x^2 - 9y^2 \end{bmatrix}$$
 R F ?
$$\begin{bmatrix} \frac{1}{2} \\ (-2xy + 6y , x^2 - 9y^2 - 6x \end{bmatrix}$$
 R F ?
$$\begin{bmatrix} \frac{1}{2} \\ (3y - xy) , 6x - (x^2 + 9y^2) \end{bmatrix}$$
 R F ?
$$\begin{bmatrix} \frac{1}{2} \\ (-2xy + 6y + 6x) \end{bmatrix}$$
 R F ?
$$\begin{bmatrix} \frac{1}{2} \\ (-2xy + 6y + 6x) \end{bmatrix}$$

b) Die Hesse-Matrix f'' von f lautet ...



NEIN

ist stationärer c) Der Punkt... falls ja, und zwar: falls nein: Punkt von f[3, -1]JA | NEIN | ? | SP | | MAX | | MIN | | k.B. | Entfällt $\frac{1}{2}$ [-3, -1]JA | NEIN | ? |SP||MAX||MIN||k.B.Entfällt |SP||MAX||MIN||k.B.[-3, 1]JA | NEIN | ? Entfällt JA | NEIN | |SP||MAX||MIN||k.B.Entfällt [3, 1]MAX | MIN | k.B.

[1,0]	JA NEIN ?	$\frac{1}{2}$	SP MAX MIN k.B. ?	Entfällt	$\frac{1}{2}$
[0, 0]	JA NEIN ?	$\frac{1}{2}$	SP MAX MIN k.B. ?	Entfällt	$\frac{1}{2}$
[6,3]	JA NEIN ?	$\frac{1}{2}$	SP MAX MIN k.B. ?	Entfällt	$\frac{1}{2}$
[0,3]	JA NEIN ?	$\frac{1}{2}$	SP MAX MIN k.B. ?	Entfällt	$\frac{1}{2}$
[6, 0]	JA NEIN ?	$\frac{1}{2}$	SP MAX MIN k.B. ?	Entfällt	$\frac{1}{2}$

II. Analysieren Sie die Vorzeichen der Hesse-Determinanten $H_1(x,y) = f_{xx}(x,y)$ und $H_2(x,y) = \det f''(x,y)$ in Abhängigkeit von x und y.

d) Es gilt $H_1(x, y) > 0$

$$\Leftrightarrow x > 0 \quad \boxed{R} \quad \boxed{F} \quad ? \quad \frac{1}{2}$$

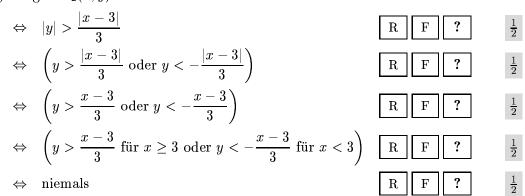
$$\Leftrightarrow y > 3 \quad \boxed{R} \quad \boxed{F} \quad ? \quad \frac{1}{2}$$

$$\Leftrightarrow y < 0 \quad \boxed{R} \quad \boxed{F} \quad ? \quad \frac{1}{2}$$

$$\Leftrightarrow y < -1 \quad \boxed{R} \quad \boxed{F} \quad ? \quad \frac{1}{2}$$

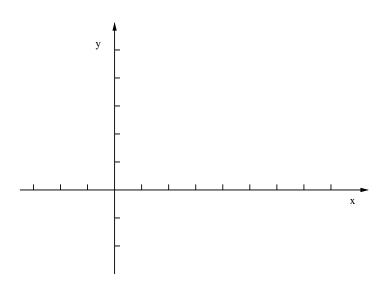
$$\Leftrightarrow xy < 0 \quad \boxed{R} \quad \boxed{F} \quad ? \quad \frac{1}{2}$$

e) Es gilt $H_2(x,y) > 0$



f) Tragen Sie "möglichst große" Mengen D^{\succcurlyeq} , D^{\preccurlyeq} und D^{\curlywedge} in das nachfolgende Diagramm derart ein, daß

- f auf D^{\triangleright} konvex ist	(schraffiert:)	
- f auf D^{\preccurlyeq} konkav ist	(nicht schraffiert:)	5
- f auf D^{\wedge} indefinit ist	(grau:	



- III. Wir betrachten die Funktion f jetzt nur noch auf dem "ökonomischen" Definitionsbereich $D_{oec} := [0,8] \times [0,3].$
 - g) Ist f auf D_{oec} beschränkt?

JA NEIN ?

1

h) Besitzt f auf D_{oec} ein lokales Maximum?

JA NEIN ?

 $\frac{1}{2}$

Wenn ja: z.B. an der Stelle (x, y) =

 $| \min f(x,y) = |$

1

Wenn nein, Begründung

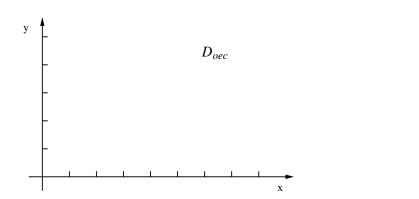
i) Ist f auf D_{oec} konkav?

JA NEIN ?

 $\frac{1}{2}$

- j) Ist es erforderlich, bei der Suche nach dem globalen (=absolut) Maximum von f die Ränder von D_{oec} zu untersuchen?

 JA NEIN ?
- k) Skizzieren Sie die Höhenlinie "f(x,y)=0" in D_{oec} in nachfolgendem Diagramm:



2

1

- l) Schraffieren Sie diejenige Teilmenge von D_{oec} , auf der gilt: $f(x,y) \ge 0$.
- m) Eignet sich f auf D_{oec} Ihrer Meinung nach als Modell für eine

						 	 	 • • • •	 	• • • •
• Kostenfu	$_{ m nktion}$	JA	NEIN	?	$_{ m ,denn}$. 1
• Gewinnfu										
						 	 • • • • •	 	 • • • •	
• Nutzenfu	$_{ m nktion}$	JA	NEIN	?	$_{ m ,denn}$	 	 	 	 	1

2. Komplexe Aufgabe

Gegeben sei die Funktion f auf $D := [0, \infty) \times [0, \infty)$ durch

$$f(x,y) = 2x^2 + 3y + xy^2 .$$

- (i) Stellen Sie fest, ob f als Modell für eine
 - (Gesamt-)Kostenfunktion
 - Produktionsfunktion
 - Nutzenfunktion

dienen kann. (Legen Sie dazu zunächst selbst Kriterien fest, denen die o.g. Funktionen genügen sollen, und überprüfen Sie, ob f diesen Kriterien genügt.)

- (ii) Ist f auf D oder einer konvexen Teilmenge \tilde{D} von D konvex? (Wenn ja, bestimmen Sie die größtmögliche Menge \tilde{D} .)
- (iii) Ermitteln Sie die Ableitung der durch die Gleichung

$$f(x,\phi(x)) = f(1,6)$$

implizit gegebenen Funktion $\phi(x)$ an der Stelle x=1 . (Implizite Differentiation)

- (iv) Welche Höhenlinie von f enthält den Punkt (1,6)?
- (v) Wählt man die Inputgrößen x und y in Abhängigkeit von einem Parameter t gemäß

$$\begin{array}{rcl} x(t) & = & \sqrt{t} \\ y(t) & = & \ln(1+t) \ , \end{array}$$

entsteht eine neue Funktion g durch

$$g(t) := f(x(t), y(t)), t \ge 0.$$

Bestimmen Sie deren Ableitung g'(t) mit Hilfe der Kettenregel.

- (vi) Bestimmen Sie die partiellen Elastizitäten $\varepsilon_{f,y}$ von f bezüglich y allgemein (d.h., als Funktion von x und y) und speziell an der Stelle (x,y)=(1,6). Welche Interpretation hat der zuletzt gefundene Wert?
- (vii) Ist f homogen (und falls ja, von welchem Grad)? (Begründung!)

3. Implizite Differentiation

Im \mathbb{R}^2 wird durch die Gleichung $x^2 + xy + y^2 = 112$ eine Kurve definiert, der der Punkt $(x_0, y_0) = (4, 8)$ angehört.

- (i) Welche Steigung hat die Tangente an diese Kurve im Punkt (x_0, y_0) ?
- (ii) Gibt es weitere Punkte, in denen die Tangente an diese Kurve dieselbe Steigung hat?
- (iii) Geben Sie alle Punkte auf der Kurve mit "waagerechter" Tangente an.
- (iv) (*)— Aufgabe: Ist die Kurve in einer Umgebung von (x_0, y_0) (die ggf. sehr klein sein kann) konvex oder konkav?

Hinweis: Die Tangentensteigungen werden - wie üblich - auf das (x, y)-Koordiantensystem bezogen; d.h., die Tangente wird als Funktion von x gedeutet.

Abgabe: bis 22.7.2003 13.00 Uhr

Box 114, 117 (grün) auf D1-Flur

Rückgabe: ab 30.07.2003

in den Übungsgruppen