

SERIE 1.10

1. functions II

Hinweis: Diese Aufgaben behandeln überwiegend Schulstoff.

(I)

Für welche $x \in \mathbb{R}$ sind die folgenden Ausdrücke sinnvoll?

- (a) $\sqrt{3x-5}$
- (b) $\ln \left(\frac{15x 240}{33} \right)$
- (c) $\sqrt{x^2 4x + 3}$
- (d) $\frac{1}{\ln x}$

(II)

Für jede der nachfolgend angegebenen Funktionen untersuche man:

- Ist f_i beschränkt?
- Ist der Definitionsbereich D_i von f_i beschränkt?
- Ist f_i monoton bzw. streng monoton wachsend bzw. fallend auf D_i ?
- Gibt es ein globales (= absolutes) Maximum bzw. Minimum? (Falls ja: Welchen Wert hat es? Geben Sie die Menge aller zugehörigen Maximum-bzw. Minimumstellen an.)
- Besitzt f_i ein oder mehrere lokale (= relative) Maxima bzw. Minima? (Falls ja: Wie lauten diese, welches sind die zugehörigen Extremstellen?)

Die zu untersuchenden Funktionen sind:

- (i^1) $f_0:[0,\infty)\to I\!\!R:f_0(x)=7x-2$
- (i²) $f_1:[0,10) \to \mathbb{R}: f_1(x) = x^3 12x^2 + 60x + 15$
- (i^3) $f_2:[0,\infty)\to IR:f_2=1-e^{-x}$
- (i^4) $f_3:(0,\infty)\to I\!\!R:f_3(x)=\frac{1}{x}e^x$

Abgabe: bis 18.01.2005 9.00 Uhr Box 114, 117 (grün) auf D1-Flur

Rückgabe: eine Woche später in den Übungsgruppen